Proposal of Acoustic Liners Combined with Fine-Perforated-Film

2021 ◽  
Vol 263 (1) ◽  
pp. 5475-5484
Author(s):  
Yo Murata ◽  
Tatsuya Ishii ◽  
Shunji Enomoto ◽  
Hideshi Oinuma ◽  
Kenichiro Nagai ◽  
...  

This paper deals with a resonant type liner panel with a special surface structure. A typical resonant type liner panel generally consists of a perforated face plate, cells, and a back rigid plate. One of the technical challenges of the acoustic liners applied to the future ultra-high bypass ratio engines is to increase the sound absorption efficiency under grazing conditions because the nacelle, covering of the engine, tends to reduce its length and the lined area. It is known that the sound absorption of the conventional liners tends to deteriorate as grazing flow increases. The authors introduced a special thin acoustically transparent film over the face plate of the acoustic liner. The film, a fine perforated film (FPF), is expected to prevent the interaction of the grazing flow with the opening of the liner face plate. An experimental result with a flow duct rig in JAXA confirmed that the proposed combination of the acoustic liner and the FPF improved the absorption in acoustic energy under grazing conditions, compared with the sole acoustic liner and simple treatment of the FPF.

2021 ◽  
pp. 1475472X2110238
Author(s):  
Michael G Jones ◽  
Douglas M Nark ◽  
Brian M Howerton

This paper presents results for five uniform and two multizone liners based on data acquired in the NASA Langley Grazing Flow Impedance Tube. Two methods, Prony and CHE, are used to educe the impedance spectra for each of these liners for many test conditions. The Prony method is efficient and generally provides accurate results for uniform liners, but is not well suited for multizone liners. The CHE method supports assessment of both uniform and multizone liners, but is much more computationally expensive. The results from these liners demonstrate the efficacy of both eduction methods, but also clearly demonstrate that sufficient attenuation is required to support accurate impedance eduction. For the liners considered in this study, the data indicate approximately 3 dB attenuation is needed for each zone of a multizone liner in order to ensure quality impedance eduction results. This study was conducted in response to two acoustic liner research challenges in support of a collaboration of multiple national laboratories under the International Forum for Aviation Research.


2021 ◽  
Vol 263 (6) ◽  
pp. 508-518
Author(s):  
Frank Simon ◽  
R. Roncen ◽  
P. Vuillemin ◽  
P. Klotz ◽  
Fabien Méry ◽  
...  

In the context of aircraft noise reduction in varied applications where a cold or hot shear grazing flow is present (i.e., engine nacelle, combustion chamber, jet pump, landing gear), improved acoustic liner solutions are being sought. This is particularly true in the low-frequency regime, where space constraints limit the efficiency of conventional liner technology. Therefore, liner design must take into account the dimensional and phenomenological characteristics of constituent materials, assembly specifications and industrial requirements involving multiphysical phenomena. To perform the single/multi-objective optimization of complex meta-surface liner candidates, a software platform coined OPAL (OPtimisation of Acoustic Liners) was developed. Its first goal is to allow the user to assemble a large panel of parallel/serial elementary acoustic layers along a given duct. Then, the physical properties of this liner can be optimized, relatively to weighted objectives, for a given flow and frequency range: impedance target, maximum absorption coefficient or transmission loss with a total sample size and weight... The presentation will focus on the different elementary bricks and assembly of a problem (from 0D analytical coarse designs in order to reduce the parameter space, up to 2D plan or axisymmetric high-order Discontinuous Galerkin simulations of the Linearized Euler Equations).


Author(s):  
Alireza Mazdeh ◽  
Reza Kashani

Perforated acoustic liners (screech liners) with bias flow are commonly used for mitigation of thermoacoustic instabilities in augmentors. In addition to cooling the liner, the flow of air thru the liner perforation (dubbed ‘bias flow’) improves the damping effectiveness of the liner thru enhancing its energy dissipation. These liners are currently being designed using empirical design rules followed by build-test-improve steps, basically trial and error. The development of physics-based tools to assist in the design of such liners is of great interest to practitioners. In this paper, the existing work in developing analytical, semi-empirical, and numerical techniques such as Large-Eddy Simulations (LES) in exploring the damping effectiveness of an acoustic liner with bias flow are reviewed. The paper continues with presenting the research in progress that has been conducted by the authors in this area with the goal of expanding the numerical modeling work beyond the current state of the art by including the variables that were not incorporated in previous studies including, but not limited to, hole orientation, combined effect of tangential grazing flow and bias flow interaction with acoustics, and different flow characteristics (Mach and Reynolds number). In addition, the spatial distribution of pressure and velocity over the aperture area (instead of the current practice of averaging these variables) are being looked at.


2010 ◽  
Vol 146-147 ◽  
pp. 1049-1055
Author(s):  
Xue Liu Fan ◽  
Xiang Chen ◽  
Yan Xiang Li

The acoustic properties of aluminum foams by gas injection method were studied experimentally. The micro and macro structure of aluminum foam with closed cells were observed by optical microscope (OM) and scanning electron microscope (SEM). The special structure of the closed-pores of the aluminum foams have leaded to good performance of the sound absorption based on three mechanisms: Helmholtz resonance, cell wall vibration and viscous and thermal effects. The effect of cell sizes, thickness of aluminum foams has been investigated and the cavity set at the back of the foam samples on the sound absorption efficiency of the foams has been measured. Analytical models of membrane vibrations were used to explain the sound absorption capacity of the foams.


Author(s):  
Tatsuro Nakai ◽  
Hisao Matsushita ◽  
Norio Yamamoto

The objective of this study is to obtain basic data for discussing the structural integrity of aged ships, especially hold frames of aged bulk carriers. Firstly, shapes of corrosion pits observed on hold frames of bulk carriers have been investigated. It was shown that the shape of the corrosion pits is a circular cone and the ratio of the diameter to the depth is in the range between 8 to 1 and 10 to 1. Secondly, a series of tensile tests has been conducted to investigate the effect of pitting corrosion on tensile strength. It was pointed out that the tensile strength decreases gradually and the total elongation decreases drastically with the increase of thickness loss due to pitting corrosion. Thirdly, a series of 4-point bend tests with structural models which consist of shell, web and face plates simulating hold frames of bulk carriers has been carried out to investigate the effect of pitting corrosion on collapse behavior and lateral-distortional buckling behavior. Following the experiment, a series of non-linear FE-analyses has been also made. In the case where tensile load acted on the face plate, cracks were initiated at the bottom of the pits when pitting concentrated on the web near the face plate. On the other hand in the case where compression load acted on the face plate, lateral-distortional buckling has been observed and the ultimate load of the structural models where pitting developed regularly on the web was found to be almost the same as that of the structural models where the web has uniform corrosion corresponding to the average thickness loss.


2021 ◽  
Vol 263 (6) ◽  
pp. 152-163
Author(s):  
Remi Roncen ◽  
Pierre Vuillemin ◽  
Patricia Klotz ◽  
Frank Simon ◽  
Fabien Méry ◽  
...  

In the context of noise reduction in diverse applications where a shear grazing flow is present (i.e., engine nacelle, jet pump, landing gear), improved acoustic liner solutions are being sought. This is particularly true in the low-frequency regime, where space constraints currently limit the efficiency of classic liner technology. To perform the required multi-objective optimization of complex meta-surface liner candidates, a software platform called OPAL was developed. Its first goal is to allow the user to assemble a large panel of parallel/serial assembly of unit acoustic elements, including the recent concept of LEONAR materials. Then, the physical properties of this liner can be optimized, relatively to given weighted objectives (noise reduction, total size of the sample, weight), for a given configuration. Alternatively, properties such as the different impedances of liner unit surfaces can be optimized. To accelerate the process, different nested levels of optimization are considered, from 0D analytical coarse designs in order to reduce the parameter space, up to 2D plan or axisymmetric high-order Discontinuous Galerkin resolution of the Linearized Euler Equations. The presentation will focus on the different aspects of liner design considered in OPAL, and present an application on different samples made for a small scale aeroacoustic bench.


Author(s):  
Daesik Kim ◽  
Seungchai Jung ◽  
Heeho Park

The side-wall cooling liner in a gas turbine combustor serves main purposes—heat transfer and emission control. Additionally, it functions as a passive damper to attenuate thermoacoustic instabilities. The perforations in the liner mainly convert acoustic energy into kinetic energy through vortex shedding at the orifice rims. In the previous decades, several analytical and semi-empirical models have been proposed to predict the acoustic damping of the perforated liner. In the current study, a few of the models are considered to embody the transfer matrix method (TMM) for analyzing the acoustic dissipation in a concentric tube resonator with a perforated element and validated against experimental data in the literature. All models are shown to quantitatively appropriately predict the acoustic behavior under high bias flow velocity conditions. Then, the models are applied to maximize the damping performance in a realistic gas turbine combustor, which is under development. It is found that the ratio of the bias flow Mach number to the porosity can be used as a design guideline in choosing the optimal combination of the number and diameter of perforations in terms of acoustic damping.


2018 ◽  
Vol 8 (10) ◽  
pp. 1923
Author(s):  
Martin Dannemann ◽  
Michael Kucher ◽  
Eckart Kunze ◽  
Niels Modler ◽  
Karsten Knobloch ◽  
...  

In aero engines, noise absorption is realised by acoustic liners, e.g., Helmholtz resonator (HR) liners, which often absorb sound only in a narrow frequency range. Due to developments of new engine generations, an improvement of overall acoustic damping performance and in particular more broadband noise absorption is required. In this paper, a new approach to increase the bandwidth of noise absorption for HR liners is presented. By replacing rigid cell walls in the liner’s honeycomb core structure by flexible polymer films, additional acoustic energy is dissipated. A manufacturing technology for square honeycomb cores with partially flexible walls is described. Samples with different flexible wall materials were fabricated and tested. The acoustic measurements show more broadband sound absorption compared to a reference liner with rigid walls due to acoustic-structural interaction. Manufacturing-related parameters are found to have a strong influence on the resulting vibration behaviour of the polymer films, and therefore on the acoustic performance. For future use, detailed investigations to ensure the liner segments compliance with technical, environmental, and life-cycle requirements are needed. However, the results of this study show the potential of this novel liner concept for noise reduction in future aero-engines.


Sign in / Sign up

Export Citation Format

Share Document