Pitting Corrosion and Its Influence on Local Strength of Hull Structural Members

Author(s):  
Tatsuro Nakai ◽  
Hisao Matsushita ◽  
Norio Yamamoto

The objective of this study is to obtain basic data for discussing the structural integrity of aged ships, especially hold frames of aged bulk carriers. Firstly, shapes of corrosion pits observed on hold frames of bulk carriers have been investigated. It was shown that the shape of the corrosion pits is a circular cone and the ratio of the diameter to the depth is in the range between 8 to 1 and 10 to 1. Secondly, a series of tensile tests has been conducted to investigate the effect of pitting corrosion on tensile strength. It was pointed out that the tensile strength decreases gradually and the total elongation decreases drastically with the increase of thickness loss due to pitting corrosion. Thirdly, a series of 4-point bend tests with structural models which consist of shell, web and face plates simulating hold frames of bulk carriers has been carried out to investigate the effect of pitting corrosion on collapse behavior and lateral-distortional buckling behavior. Following the experiment, a series of non-linear FE-analyses has been also made. In the case where tensile load acted on the face plate, cracks were initiated at the bottom of the pits when pitting concentrated on the web near the face plate. On the other hand in the case where compression load acted on the face plate, lateral-distortional buckling has been observed and the ultimate load of the structural models where pitting developed regularly on the web was found to be almost the same as that of the structural models where the web has uniform corrosion corresponding to the average thickness loss.

Author(s):  
Tatsuro Nakai ◽  
Hisao Matsushita ◽  
Norio Yamamoto

Corrosion pits with a conical shape are typically observed in hold frames in way of cargo holds of bulk carriers which carry coal and iron ore. The ratio of the diameter to the depth of the typical corrosion pits is in the range between 8–1 and 10–1 and its diameter might become up to 50mm. The evaluation of residual strength of members with large uneven pitting corrosion is difficult compared with that of members with general corrosion. Therefore, it is of crucial importance to develop a method for the evaluation of residual strength of pitted members. The purpose of the present study is to investigate the effect of pitting corrosion on the ultimate strength of steel plates under various loading conditions and explore a method for the evaluation of residual thickness of pitted plates. In the present study, a series of non-linear FE-analyses has been conducted with steel plates with a variety of random pit distributions under various loading conditions such as uni-axial compression, bi-axial compression, shear and combination of these. In these analyses, random pit distributions were calculated by the previously developed corrosion model. It has been shown that equivalent thickness loss, which is defined as thickness loss of uniformly corroded plates with the same ultimate strength as the randomly pitted plates, is smaller than or equal to 1.25 times the average thickness loss. It has been also revealed that the equivalent thickness loss for the ultimate strength under the above-mentioned loading conditions is smaller than average thickness loss at the minimum cross section, where the average thickness loss at the minimum cross section almost corresponds to the equivalent thickness loss for the tensile strength. Based on these findings, a method for the estimation of equivalent thickness loss of pitted plates has been discussed using the thickness diminution-DOP relationship, where DOP (Degree of Pitting Intensity) is defined as the ratio of the pitted surface area to the total surface area.


2007 ◽  
Vol 340-341 ◽  
pp. 489-494 ◽  
Author(s):  
Tatsuro Nakai ◽  
Hisao Matsushita ◽  
Norio Yamamoto

Pitting corrosion is a great concern when the integrity of ship's hull structures is considered. Corrosion pits with a conical shape are typically observed on coated hold frames in way of cargo holds of bulk carriers which exclusively carry coal and iron ore. Therefore, it is important to investigate the effect of pitting corrosion on local strength of hold frames of bulk carriers. In the present study, a series of 3-point bend tests with structural models which consist of web, shell and face plates has been conducted. In these tests, a concentrated load has been vertically applied at the center of simply supported models so that shear load would act on the web plate with artificial pits. In this testing condition, load increased even after shear buckling occurred. When there is artificial pitting, fracture of web plates occurs due to strain concentration at the pits. It has been revealed that the empirical formula, which was developed based on non-linear FE-analyses, overestimates the equivalent thickness for the shear ultimate strength obtained in the present experiment, because the effect of web fracture is not taken into account in the analyses.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 930 ◽  
Author(s):  
Hanme Yoon ◽  
Heon-Young Ha ◽  
Tae-Ho Lee ◽  
Sung-Dae Kim ◽  
Jae Hoon Jang ◽  
...  

The effects of C-substitution for part of the N content, on the pitting corrosion resistance and repassivation tendencies of duplex stainless steels (DSSs) were investigated. For this investigation, normal UNS S32205 containing N only (DSS-N) and the C-substituted DSS (DSS-NC) were fabricated. Microstructural analyses confirmed that the two DSSs had dual-phase microstructures without precipitates, and they possessed similar initial microstructure, including their grain sizes and phase fractions. Polarization and immersion tests performed in concentrated chloride solutions revealed that the DSS-NC was more resistant against stable pitting corrosion and possessed a higher repassivation tendency than the DSS-N. Furthermore, the corrosion pits initiated and propagated to a less corrosion resistant α phase. Polarization tests and corrosion depth measurements conducted in an HCl solution indicated that the DSS-NC exhibited lower galvanic corrosion rate between the α and γ phases than the DSS-N. Therefore, the growth rate of pit embryo was lowered in the DSS-NC, which shifted the potentials for the stable pit initiation and the pit extinction to the higher values.


2017 ◽  
Vol 11 (1) ◽  
pp. 244-257 ◽  
Author(s):  
Xingyou Yao

Background: Cold-formed steel structural sections used in the walls of residential buildings and agricultural facilities are commonly C-shaped sections with web holes. These holes located in the web of sections can alter the elastic stiffness and the ultimate strength of a structural member. The objective of this paper is to study the buckling mode and load-carrying capacity of cold-formed thin-walled steel column with slotted web holes. Methods: Compression tests were conducted on 26 intermediate length columns with and without holes. The tested compressive members included four different kinds of holes. For each specimen, a shell finite element Eigen-buckling analysis and nonlinear analysis were also conducted. The influence of the slotted web hole on local and distortional buckling response had also been studied. The comparison on ultimate strength between test results and calculated results using Chinese cold-formed steel specification GB50018-2002, North American cold-formed steel specification AISI S100-2016, and nonlinear Finite Element method was made. Result: Test results showed that the distortional buckling occurred for intermediate columns with slotted holes and the ultimate strength of columns with holes was less than that of columns without holes. The ultimate strength of columns decreased with the increase in transverse width of hole in the cross-section of member. The Finite element analysis results showed that the web holes could influence on the elastic buckling stress of columns. The shell finite element could be used to model the buckling modes and analysis the ultimate strength of members with slotted web holes. The calculated ultimate strength shows that results predicted with AISI S100-2016 and analyzed using finite element method are close to test results. The calculated results using Chinese code are higher than the test results because Chinese code has no provision to calculate the ultimate strength of members with slotted web holes. Conclusion: The calculated method for cold-formed thin-walled steel columns with slotted web holes are proposed based on effective width method in Chinese code. The results calculated using the proposed method show good agreement with test results and can be used in engineering design for some specific cold-formed steel columns with slotted web holes studied in this paper.


2019 ◽  
Vol 2 (2) ◽  
pp. 138
Author(s):  
Yustria Handika Siregar ◽  
Mardiana Nainggolan

Abstract - Developments in information technology, especially information systems have brought convenience that promises a work efficiency. For example geographic information system is a tool with a computer system that is used to map conditions and events that occur on the face of the earth is a system that is helpful in providing and presenting information needed by users. The development especially in the aspect of environmental needs in order to overcome or reduce the impact of disasters in the Sumatran region, and by improving the performance of the BPBD, it is necessary to have a GIS-based information system that can show BPBD disaster points that already exist in North Sumatra. With the existence of map information, especially in the web system, it is expected to provide fast and accurate information, especially knowing the exact location of the disaster. thus facilitating the work of officers in providing disaster information at the head office. Keywords - Geographic Information Systems, Mapping, Web. 


Author(s):  
Patrick Brewick ◽  
Andrew Geltmacher ◽  
Siddiq M. Qidwai

Despite the many advances made in material science, stainless steel and aluminum remain the structural materials best-suited for the naval fleet. While these metallic materials offer many benefits, such as high strength and good toughness, their persistent exposure to the maritime environment inevitably leads to issues with corrosion. Among the various manifestations of corrosion, pitting corrosion is of particular concern because the transition of corrosion pits to stress-corrosion cracks can lead to catastrophic failures. Traditional pitting corrosion analyses treat the pit shape as a semi-circle or ellipse and typically assume a growth pattern that maintains the original geometrical shape. However, when the underlying microstructure is incorporated into the model, pit growth is related to the grains surrounding the pit perimeter and the growth rate is proportional to crystallographic orientation. Since each grain has a potentially different orientation, pit growth happens at non-uniform rates leading to irregular geometries, i.e., non-circular and non-elliptical. These irregular pit geometries can further lead to higher stresses. This work presents a detailed look at corrosion pit growth coupled with mechanical load through a numerical model of a two-dimensional stable corrosion pit. Real microstructural information from a sample of 316 stainless steel is incorporated into the model to analyze microstructural effects on pit growth. Through this work, stress distributions and stress concentration factors are examined for a variety of pit geometries, including comparisons of their range of values to a typical, semi-circular pit. The consequences of these stress distributions and concentration factors are discussed.


2007 ◽  
Vol 49 (2) ◽  
pp. 559-579 ◽  
Author(s):  
A. Valor ◽  
F. Caleyo ◽  
L. Alfonso ◽  
D. Rivas ◽  
J.M. Hallen

2020 ◽  
Vol 60 (2) ◽  
pp. 598
Author(s):  
M. Brameld ◽  
S. Thomas ◽  
G. S. Malab

External pitting corrosion has been a long standing issue for stainless steel pressure equipment systems on Woodside offshore facilities. Experience has shown that this pitting cannot be effectively managed by inspection and, as a result, the current policy is that piping replacement should be planned once the presence of significant pitting corrosion has been identified. All Woodside offshore facilities have 316-grade stainless steel pressure equipment which is experiencing active external corrosion pitting to varying degrees. This represents the potential for hundreds of millions of dollars in piping replacement across the company. STOPAQ is an established product for the mitigation of external corrosion in carbon steel equipment however, it has not previously been used at Woodside on stainless steel equipment to address pitting corrosion. Through collaboration with the Woodside Future Laboratory at Monash University, Materials and Corrosion Engineering, Woodside Energy Limited has challenged the old established theory regarding the mechanism of pitting in stainless steel and a test program has been devised to validate the new way of thinking, which postulates that elimination of moisture and oxygen from the pits, by the application of an impervious layer like STOPAQ, will stifle the corrosion reaction and arrest the pitting. A recently completed test program at Monash which utilised computed tomography (CT) scanning, to very accurately determine the volume of corrosion pits, has confirmed that the application of STOPAQ to pitted stainless steel is very effective at mitigating this type of corrosion.


2020 ◽  
Vol 148 ◽  
pp. 106579 ◽  
Author(s):  
Zhongwei Zhao ◽  
Hongwei Zhang ◽  
Lina Xian ◽  
Haiqing Liu

Sign in / Sign up

Export Citation Format

Share Document