scholarly journals Formulation and evaluation of fast disintegrating tablets of metoprolol succinate using various superdisintegrants

Author(s):  
M. Aruna ◽  
Samreen ◽  
Shaik Harun Rasheed

The aim of present work is to develop a fast disintegrating solid oral dosage form of Metoprolol succinate. The concept of fast dissolving drug delivery system emerged from the desire to provide patient with more conventional means of taking their medication. Problems associated with conventional tablets can be resolved by means of fast dissolving tablets when put on tongue these tablets disintegrate and dissolve rapidly in saliva without need of drinking water. The faster the drug disintegrates in to solution, the quicker the absorption and onset of clinical effect. Preformulation results reveal that the flow properties of the active pharmaceutical ingredient were found to be excellent as per IP limits. To perform drug-polymer compatibility FT-IR studies were carried out and observed that there was no interaction between the APl and excipients. Eight formulations were prepared with varying super disintegrating agent ratios and were found that as the level of super disintegrating agent decreased the drug release rates were found to be increased. Amongst all the formulations, formulation containing CCS (F4) as super disintegrant is fulfilling all the parameters satisfactorily. It has shown excellent in-vitro disintegration, in-vitro dissolution compared to other formulations. The prepared tablets disintegrate within few minutes without need of water; thereby enhance the absorption leading to its increased bioavailability. It was concluded that Fast Disintegrating tablets of Metoprolol can be prepared successfully as it satisfies all the criteria as a dispersible tablet and would be alternative to the currently available conventional tablets. Prepared formulations were stable during 90 days storage period at controlled 40°C and 75%RH.

Author(s):  
Suresh Kulkarni ◽  
Ranjit P. ◽  
Nikunj Patel ◽  
Someshwara B. ◽  
Ramesh B. ◽  
...  

The present investigation deals with the formulation of fast disintegrating tablets of Meloxicam that disintegrate in the oral cavity upon contact with saliva and there by improve therapeutic efficacy. Meloxicam is a newer selective COX-1 inhibitor. The tablets were prepared by wet granulation procedure. The influence of superdisintegrants, crosspovidone, croscaremellose sodium on disintegration time, wetting time and water absorption ratio were studied. Tablets were evaluated for weight and thickness variation, disintegration time, drug content, in vitro dissolution, wetting time and water absorption ratio. The in vitro disintegration time of the best fast disintegrating tablets was found to be 18 sec. Tablets containing crospovidone exhibit quick disintegration time than tablets containing croscaremellose sodium. The fast disintegrating tablets of Meloxicam with shorter disintegration time, acceptable taste and sufficient hardness could be prepared using crospovidone and other excipients at optimum concentration.


2011 ◽  
Vol 47 (3) ◽  
pp. 545-553 ◽  
Author(s):  
Sathis Kumar Dinakaran ◽  
Santhos Kumar ◽  
David Banji ◽  
Harani Avasarala ◽  
Venkateshwar Rao

The purpose of this research study was to establish ziprasidone HCl NR 40 mg and trihexyphenidyl HCl SR 4mg in the form of bi-layer sustained release floating tablets. The tablets were prepared using sodium HPMC K4M / HPMC K15M as bio-adhesive polymers and sodium bicarbonate acting as a floating layer. Tablets were evaluated based on different parameters such as thickness, hardness, friability, weight variation, in vitro dissolution studies, content of active ingredient and IR studies. The physico-chemical properties of the finished product complied with the specifications. In vitro release from the formulation was studied as per the USP XXIII dissolution procedure. The formulations gave a normal release effect followed by sustained release for 12 h which indicates bimodal release of ziprasidone HCl from the matrix tablets. The data obtained was fitted to Peppas models. Analysis of n values of the Korsmeyer equation indicated that the drug release involved non-diffusional mechanisms. By the present study, it can be concluded that bi-layer tablets of ziprasidone HCl and trihexyphenidyl HCl will be a useful strategy for extending the metabolism and improving the bioavailability of Ziprasidone HCl and Trihexyphenidyl HCl.


2021 ◽  
Vol 24 ◽  
pp. 548-562
Author(s):  
Matthias Shona Roost ◽  
Henrike Potthast ◽  
Chantal Walther ◽  
Alfredo García-Arieta ◽  
Ivana Abalos ◽  
...  

This article describes an overview of waivers of in vivo bioequivalence studies for additional strengths in the context of the registration of modified release generic products and is a follow-up to the recent publication for the immediate release solid oral dosage forms. The current paper is based on a survey among the participating members of the Bioequivalence Working Group for Generics (BEWGG) of the International Pharmaceutical Regulators Program (IPRP) regarding this topic. Most jurisdictions consider the extrapolation of bioequivalence results obtained with one (most sensitive) strength of a product series as less straightforward for modified release products than for immediate release products. There is consensus that modified release products should demonstrate bioequivalence not only in the fasted state but also in the fed state, but differences exist regarding the necessity of additional multiple dose studies. Fundamental differences between jurisdictions are revealed regarding requirements on the quantitative composition of different strengths and the differentiation of single and multiple unit dosage forms. Differences in terms of in vitro dissolution requirements are obvious, though these are mostly related to possible additional comparative investigations rather than regarding the need for product-specific methods. As with the requirements for immediate release products, harmonization of the various regulations for modified release products is highly desirable to conduct the appropriate studies from a scientific point of view, thus ensuring therapeutic equivalence.


2019 ◽  
Vol 9 (6) ◽  
pp. 55-63 ◽  
Author(s):  
Mulchand A. Shende ◽  
Kajal D Chavan

SeDeM design expert technique used to evaluate the risks of poor flow of pharmaceutical powders under preformulation studies which reveals direct compression suitability and prepare robust composition of active pharmaceutical ingredient (API) and excipient in tablets formulation. The purpose of this study was to develop oral disintegrating tablets of Furosemide using different concentration of natural and synthetic superdisintegrants by means of SeDeM design technique. Oral disintegrating tablets (ODT) of Furosemide were prepared by direct compression technique using isolated banana powder and croscarmellose sodium (Ac-di-sol) together with microcrystalline cellulose as superdisintegrants. SeDeM design was performed to check suitability and deficient of excipients and drug for optimized composition derived based on IPP value. These tablets were evaluated for hardness, friability, drug content, weight variation, wetting time and in-vitro dissolution. All the formulations showed low weight variation with dispersion time less than 173.5±0.70 seconds and rapid in-vitro dissolution. The drug content of all the formulations was within the acceptable limits. Lubricated blend composition of F4 found average radius value 5.24, 0.66 and 5.509 for IGC, IP and IPP respectively, compressed tablet shown good physical properties. The optimized formulation F4 showed good release profile with 99.25 percentage drug release compared to other trial batches. It was concluded that natural superdisintegrant (banana powder) showed better disintegrating property than synthetic super disintegrant (Ac-di-sol) in the formulations of ODTs. Keywords: Furosemide, Oral disintegrating tablets, SeDeM expert system, Superdisintegrants


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 266 ◽  
Author(s):  
Adam Bohr ◽  
Thais Nascimento ◽  
Necati Harmankaya ◽  
Johan Weisser ◽  
Yingya Wang ◽  
...  

Many anti-cancer drugs are difficult to formulate into an oral dosage form because they are both poorly water-soluble and show poor permeability, the latter often as a result of being an intestinal efflux pump substrate. To obtain a more water-soluble formulation, one can take advantage of the higher solubility of the amorphous form of a given drug, whereas to increase permeability, one can make use of an efflux pump inhibitor. In this study, a combination of these two strategies was investigated using the co-amorphous approach, forming an amorphous mixture of two anti-cancer drugs, docetaxel (DTX) and bicalutamide (BIC). The efflux substrate, DTX, was combined with the efflux inhibitor, BIC, and prepared as a single phase co-amorphous mixture at a 1:1 molar ratio using vibrational ball milling. The co-amorphous formulation was tested in vitro and in vivo for its dissolution kinetics, supersaturation properties and pharmacokinetics in rats. The co-amorphous formulation showed a faster in vitro dissolution of both drugs compared to the control groups, but only DTX showed supersaturation (1.9 fold) compared to its equilibrium solubility. The findings for the co-amorphous formulation were in agreement with the pharmacokinetics data, showing a quicker onset in plasma concentration as well as a higher bioavailability for both DTX (15-fold) and BIC (3-fold) compared to the crystalline drugs alone. Furthermore, the co-amorphous formulation remained physically stable over 1.5 years at 4 °C under dry conditions.


2019 ◽  
Vol 64 (02) ◽  
pp. 61-72
Author(s):  
Elena Kazandjievska ◽  
Iva Antova ◽  
Slavica Mitrevska ◽  
Aleksandar Dimkovski ◽  
Elena Dimov ◽  
...  

In vitro dissolution profiles are increasingly used to evaluate drug release characteristics of pharmaceutical products. The dissolution methods is expected to be an appropriate tool for checking consistency of the pharmaceutical attributes by discriminating similarities and dissimilarities between different drug formulations. Expansion in development of novel “special” dosage forms, due to the manner in which these dosage forms release the active pharmaceutical ingredient, usually requires applying non-compendial dissolution strategy that differs from the traditional compendial recommendations. For demonstrating sameness in the dissolution profile, in vitro drug release comparison between test and reference product of highly viscous oral suspension by applying non-compendial peak vessel against conventional hemispheric vessel was demonstrated in this study. All reference batches exhibited high variability in dissolution data when using hemispheric vessel due to forming mound compact mass at the bottom of the vessel. Different strategies for samples manipulation, before and during dissolution period, were performed in order to eliminate additional variabilities. Modifications of conventional USP 2 apparatus such as using peak vessel provided with more reproducible and reliable result for distinguishing in vitro similarities between different formulations of oral suspensions. Misinterpretation of dissolution data can lead to negative impact on product development. Taking time to observe and evaluate what is happening to the product in the vessel during dissolution is of curtail consideration for proper selection of the dissolution strategy. Keywords: oral suspensions; in-vitro release; hydrodynamic variability; USP apparatus 2/ Paddle apparatus; peak vessel


2020 ◽  
Vol 9 (4) ◽  
pp. 79-87
Author(s):  
D. V. Demchenko ◽  
E. A. Jain (Korsakova) ◽  
V. Yu. Balabanyan ◽  
M. N. Makarova ◽  
V. G. Makarov

Introduction. 1-[2-(2-benzoylphenoxy)ethyl]-6-methyluracil is a substance of scientific interest intended for the treatment of HIV-infection. However, its low bioavailability is a major limitation in successful drug delivery by oral route. Therefore, the objective of the present work was to enhance itssolubility by using solid dispersion technique followed by the development of a solid dosage form.Aim. Development of the composition and technology of tablets based on 1- [2-(2-benzoylphenoxy)ethyl]-6-methyluracil with the appropriate technological properties providing the most complete release of the active pharmaceutical ingredient (API) in vitro.Materials and methods. The pharmaceutical substance 1-[2-(2-benzoylphenoxy) ethyl]-6-methyluracil is a crystalline powder with poor solubility. Solid dispersions were prepared using Lactose, Kollidon® 17PF, Kollidon® 30, Kollidon® VA64, Kollidon 90F, and PEG-6000 as a carrier mostly in 1:4 ratio by two methods – co-melting and solvent evaporation. The technological properties of substance, tablet masses and tablet quality were determined according to the methods described in the State Pharmacopoeia of the Russian Federation (14th edition).Results and discussion. Article shows the results of development of the composition and technology of a medicine in the form of tablets based on the substance 1-[2-(2-benzoylphenoxy)ethyl]-6-methyluracil. Solid dispersion technique was used to improve the biopharmaceutical properties of 1-[2-(2-benzoylphenoxy)ethyl]-6-methyluracil.Conclusion. In vitro dissolution studies showed enhanced dissolution rate of the drug-loaded solid dispersion with Kollidon 17PF as a carrier as compared to pure drug.


2018 ◽  
Vol 2 (2) ◽  
pp. 27-36
Author(s):  
Aline Taís Fries ◽  
Natália Olegário ◽  
Sarah Chagas Campanharo ◽  
Vitor Paulo Pereira ◽  
Martin Steppe

Polymorphism is a relatively common phenomenon among pharmaceutical compounds, and one of the main aspects to be considered in the production and development of medications. The investigation of polymorphism associated with oxicams, a group belonging to the class of non-steroidal anti-inflammatory drugs (NSAIDs) has increased in recent years and, in the case of tenoxicam, the existence of four polymorphic forms is reported in the literature. The objective of this study was to characterize the presence of different polymorphic forms of tenoxicam in active pharmaceutical ingredient and oral pharmaceutical formulations, as well as to evaluate the influence on in vitro dissolution. The characterization of the three samples of pharmaceutical ingredient of tenoxicam from different suppliers by X-Ray Diffraction (XRD), Infrared (IR) and dissolution profile indicated the presence of a form III crystalline structure, without presenting significant differences between the in vitro dissolution profiles analyzed, and a Dissolution Efficiency (DE%) of 60.30%, 60.70% and 72.34%, respectively. When the four pharmaceutical specialties of tenoxicam were submitted to XRD analysis, they also presented form III crystalline structures. Despite this, the formulations presented different dissolution profiles and a DE% of 75.23%, 83.69%, 78.19% and 90.63%, respectively, without compromising their quality. However, often polymorphism affects physico-chemical properties of drugs, showing the importance of studying this phenomenon, by correlating the presence of crystalline structures to alterations in the quality of active ingredients and pharmaceutical products.


2020 ◽  
Vol 10 (5) ◽  
pp. 149-158
Author(s):  
Pintu Dhar ◽  
Himangshu Sarma ◽  
Hemanta Kumar Sharma

Background: The solid oral dosage forms containing bitter drugs need improved palatability for administration. Formulation scientists have given attention to the improvement of taste masking technologies and utilised various strategies. Objective: The present work aimed to mask the bitter taste of Promethazine Hydrochloride by formulating Oral Dispersible Tablets using Okra mucilage as a taste-masking agent.  Methods: The Okra mucilage was extracted from Okra by the aqueous extraction process. An emulsion solvent diffusion technique was used for masking the bitter taste of Promethazine Hydrochloride by using Okra mucilage. The Oral Dispersible Tablet was prepared by the wet granulation method. The mucilage and the formulation were characterized and evaluated by standard methods and protocols. Results: Taste masking of the bitter drug was successfully achieved by Okra mucilage. The DSC and FTIR study revealed that the drug molecule was compatible with okra mucilage and drug entrapment efficacy was found to be 94.76%. The palatability test asserted that masking of the bitter taste of the drug.  The In vitro drug release study showed that the F7 tablet batch has a better drug release rate and followed non- fickian mechanism of drug release. Conclusion: Thus, taste masking with Okra mucilage was successful and this opens opportunities for application of common edible substances in formulation development. Keywords: Fast disintegrating tablet; Natural polymer; Mouth dissolving tablet; Promethazine Hydrochloride; Taste masking


Author(s):  
A. Bhavani ◽  
B. Hemalatha ◽  
K. Padmalatha

The present focus is on the development of sustained release formulations due to its inherent boons. There are several advantages of sustained release drug delivery over conventional dosage forms like improved patient compliance, reduction in fluctuation and increased safety margin of potent drug. The present study was aimed to prepare a sustained drug delivery system to design a controlled release oral dosage form of Cefpodoxime proxetil. The sustained release matrix tablets of Cefpodoxime proxetil were prepared by wet granulation and evaluated for different parameters such as weight variation, drug content, thickness, hardness, friability and In vitro release studies. The in vitro dissolution study was carried out for 12 hours using USP (Type- II) paddle apparatus in hydrochloride (0.1N) as dissolution media for first 2 hours and phosphate buffer (pH 6.8) for next 10 hours. Based on the in vitro dissolution data, formulation F8 was selected as the best formulation from Cefpodoxime proxetil formulations (F1 – F9) as the drug release was retarded up to 12 hours with 96.29 % and followed zero order release kinetics & drug release mechanism was diffusion.


Sign in / Sign up

Export Citation Format

Share Document