scholarly journals Investigation of Power Quality Indices in Jordan University of Science and Technology Grid-Tie Photovoltaic Plant

In this paper, the effects of the grid-tie photovoltaic plant (PV) are analyzed on the power factor and the voltage harmonic distortion in the power quality aspect of the distribution network. The conditions for the total harmonic distortion (THD) in the power grid related to the photovoltaic power station connected to the user side are also summarized. Based on MATLAB/SIMSCAPE software, one string of the photovoltaic system at the Jordan University of Science and Technology (JUST) was simulated and hence, compared its results with the real results of the system. Measurement and simulation results illustrate that the voltage harmonic distortions to the power grid do not exceed the recommended levels, but the photovoltaic system needs to have a capacitor bank to get a unity power factor.

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7510
Author(s):  
Akinyemi Ayodeji Stephen ◽  
Kabeya Musasa ◽  
Innocent Ewean Davidson

Renewable Distributed Generation (RDG), when connected to a Distribution Network (DN), suffers from power quality issues because of the distorted currents drawn from the loads connected to the network over generation of active power injection at the Point of Common Coupling (PCC). This research paper presents the voltage rise regulation strategy at the PCC to enhance power quality and continuous operation of RDG, such as Photovoltaic Arrays (PVAs) connected to a DN. If the PCC voltage is not regulated, the penetration levels of the renewable energy integration to a DN will be limited or may be ultimately disconnected in the case of a voltage rise issue. The network is maintained in both unity power factor and voltage regulation mode, depending on the condition of the voltage fluctuation occurrences at the PCC. The research investigation shows that variation in the consumer’s loads (reduction) causes an increase in the power generated from the PVA, resulting in an increase in the grid current amplitude, reduction in the voltage of the feeder impedance and an increase in the phase voltage amplitude at the PCC. When the system is undergoing unity power factor mode, PCC voltage amplitude tends to rises with the loads. Its phase voltage amplitude rises above an acceptable range with no-loads which are not in agreement, as specified in the IEEE-1547 and Southern Africa grid code prerequisite. Incremental Conduction with Integral Regulator bases (IC + PI) are employed to access and regulate PVA generation, while the unwanted grid current distortions are attenuated from the network using an in-loop second order integral filtering circuit algorithm. Hence, the voltage rise at the PCC is mitigated through the generation of positive reactive power to the grid from the Distribution Static Compensator (DSTATCOM), thereby regulating the phase voltage. The simulation study is carried out in a MATLAB/Simulink environment for PVA performance.


2004 ◽  
Vol 13 (03) ◽  
pp. 557-576
Author(s):  
CHUNG-WOOK ROH ◽  
GUN-WOO MOON ◽  
MYUNG-JOONG YOUN

This paper presents a new single-stage single-switched forward converter with magnetic coupled nondissipative snubber, which gives good power factor correction (PFC), low current harmonic distortion, and tight output voltage regulation. The proposed converter features low switch current and voltage stresses, essential for the design of a single-stage power factor correction converter. The prototype shows that the IEC1000-3-2 requirements are met satisfactorily with nearly unity power factor. This proposed converter with magnetic coupled nondissipative snubber is particularly suited for power supply applications with low power level.


2021 ◽  
Author(s):  
Alon Kuperman

<p>It is well-known that attainable DC link voltage loop bandwidth in grid-connected converters operating with unity power factor is limited due to trade-off with AC-side current total harmonic distortion (THD). The letter reveals that THD requirement directly imposes the value of voltage loop gain magnitude at double-grid frequency; therefore the dynamic performance may be improved without deteriorating the grid-side current quality by modifying the controller structure such that the loop gain magnitude at double-grid frequency and the crossover frequency are decoupled. Experimental results validate the revealed findings.</p>


This paper presents about the comparison between single-phase PFC Cuk converter and bridgeless PFC (BPFC) Cuk converter for low power application. This study attempts to investigate the characteristics of conventional and bridgeless PFC Cuk converter structures with three different output voltages and verified by the simulation results. The BPFC Cuk converter provides a lower Total Harmonic Distortion (THD) of input current than the conventional PFC Cuk converter. However, the conventional PFC Cuk converter has advantage of less maximum current stress at components compared to the BPFC Cuk converter. Conventional and BPFC Cuk converter can achieve an approximately unity power factor (PF).


2021 ◽  
Vol 19 ◽  
pp. 143-148
Author(s):  
S. Haidar ◽  
◽  
E. Moussa ◽  
M. El Hassan ◽  
M. Badawi El Najjar

This paper presents a Power Quality (PQ) virtual lab that can be used by electrical engineers (EE) to enhance their knowledge and awareness on power quality disturbances in accordance to power quality standards. It will offer the EE the facility to become more aware about the problems tackling power systems and nonlinear devices, and their effects on the power quality indices. This work is built using NI LabVIEW/Multisim and is composed out of many simulations and experiments each with its learning objectives. The established measured power quality indices are mainly the root mean square (RMS), the total harmonic distortion (THD), the distortion index (DIN), the telephone influence factor (TIF), the crest factor (CF), the voltage transformer product (VT), the current transformer product (IT), the displacement power factor (DPF), the true power factor (TPF) and the unbalance factor (UF). Each of these indices is measured and analyzed in order to check how they are affected by the PQ issues.


Author(s):  
Rohollah Abdollahi

This paper presents the design and analysis of a novel polygon connected autotransformer based 30-phase ac-dc converter which supplies Direct Torque Controlled Induction Motor Drives (DTCIMD’s) in order to have better power quality conditions at the point of common coupling. The proposed converter output voltage is accomplished via three paralleled 10- pulse ac-dc converters each of them consisting of 5-phase diode bridge rectifier. An autotransformer is designed to supply the rectifiers. The proposed converter requires only three inter-phase transformers in the dc link that leads to the reduced kilovolt ampere rating, size, weight, and cost of the proposed rectifier. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6-pulse and proposed converters from view point of power quality indices. Results show that input current Total Harmonic Distortion (THD) is less than 3% for the proposed topology at variable loads.


Author(s):  
Koteswara Rao Uyyuru ◽  
Mahesh Kumar Mishra

In this paper, the perfect harmonic cancellation (PHC), unity power factor (UPF) control strategies of distribution static compensator (DSTATCOM) are compared along with a newly proposed control strategy. In the proposed strategy, to get the best power factor, the conductance factors for the compensated load are evaluated for a specified source current total harmonic distortion (THD) limit. The performance of this method along with perfect harmonic cancellation (PHC) and unity power factor (UPF) strategies is evaluated on a distribution system model developed using PSCAD 4.2.1. In the distribution system, harmonic resonance is one of the prime factors for the harmonic propagation. Hence, in damping the harmonic resonance, selection of an appropriate control strategy for the DSTATCOM is crucial and this is verified with a detailed study. The simulation results are presented to show the performance of these strategies in load compensation and damping the harmonic propagation in the distribution system.


Sign in / Sign up

Export Citation Format

Share Document