scholarly journals Performance Between PFC Cuk and Bridgeless PFC Cuk Converter with Various Output Voltages

This paper presents about the comparison between single-phase PFC Cuk converter and bridgeless PFC (BPFC) Cuk converter for low power application. This study attempts to investigate the characteristics of conventional and bridgeless PFC Cuk converter structures with three different output voltages and verified by the simulation results. The BPFC Cuk converter provides a lower Total Harmonic Distortion (THD) of input current than the conventional PFC Cuk converter. However, the conventional PFC Cuk converter has advantage of less maximum current stress at components compared to the BPFC Cuk converter. Conventional and BPFC Cuk converter can achieve an approximately unity power factor (PF).

Author(s):  
R. Kalai Priya

This paper analysis with PFC Cuk converter fed LED drive to overcome the power factor problems. The proposed circuit topology consists of diode bridge rectifier and Cuk converter. Cuk converter is operated to work under CCM mode. This combination of DBR and PFC converter is used to feed a LED drive. This converter is simulated in MATLAB software. This Cuk converter provides better results such as unity power factor and low current harmonic distortion with fuzzy logic control and hysteresis control.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rohollah Abdollahi

Purpose The purpose of this paper is to provide a T autotransformer based 12-pulse rectifier with passive harmonic reduction in more electric aircraft applications. The T autotransformer uses only two main windings which result in volume, space, size, weight and cost savings. Also, the proposed unconventional inter-phase transformer (UIPT) with a lower kVA rating (about 2.6% of the load power) compared to the conventional inter-phase transformer results in a more harmonic reduction. Design/methodology/approach To increase rating and reduce the cost and complexity of a multi-pulse rectifier, it is well known that the pulse number must be increased. In some practical cases, a 12-pulse rectifier (12PR) is suggested as a good solution considering its simple structure and low weight. But the 12PR cannot technically meet the standards of harmonic distortion requirements for some industrial applications, and therefore, they must be used with output filters. In this paper, a 12PR is suggested, which consists of a T autotransformer 12PR and a passive harmonic reduction (PHR) based on the UIPT at direct current (DC) link. Findings To show the advantage of this new combination over other solutions, simulation results are used, and then, a prototype is implemented to evaluate and verify the simulation results. The simulation and experimental test results show that the input current total harmonic distortion (THD) of the suggested 12PR with a PHR based on UIPT is less than 5%, which meets the IEEE 519 requirements. Also, it is shown that in comparison with other solutions, it is cost effective, and at the same time, its power factor is near unity, and its rating is 29.92% of the load rating. Therefore, it is obvious that the proposed rectifier is a practical solution for more electric aircrafts. Originality/value The contributions of this paper are summarized as follows. The suggested design uses a retrofit T autotransformer, which meets all technical constraints, and in comparison, with other options, has less rating, weight, volume and cost. In the suggested rectifier, a PHR based on UIPT at its dc link of 12PR is used, which has good technical capabilities and lower ratings. In the PHR based on UIPT, an IPT is used, which has an additional secondary winding and four diodes. This solution leads to a reduction in input current THD and conduction losses of diodes. In full load conditions, the input line current THD and power factor are 4% and 0.99, respectively. The THD is less than 5%, which satisfies IEEE-519 and DO-160G requirements.


2014 ◽  
Vol 571-572 ◽  
pp. 1000-1005
Author(s):  
Bai Le Zhang ◽  
Jiu He Wang ◽  
Feng Jiao Zhao

Euler-Lagrange (Euler-Lagrange, EL) mathematical model was established according to the topology of TNPC (T-type Neutral Point Clamped) PV grid-connected inverter. Based on the mathematical models and passivity-based control theory, the approach called injecting damping was adopted to design the passivity-based controller of the inverter. The passivity-based controller can decoupled-qaxis current at AC side of the grid and achieve unity power factor, the total harmonic distortion of grid-connected current is low, and the passivity-based controller also make the inverter have good dynamic and static performances. Simulation results show that the designed passive controller of TNPC PV grid-connected inverter is feasible.


Author(s):  
S. T. Siddharthan ◽  
Andrew Jones ◽  
S. Kathikeyan

This paper deals with PFC-isolated Zeta converter fed LED drive to overcome the power factor problems. The proposed circuit topology consists of diode bridge rectifier and isolated Zeta converter with high frequency transformer. A single –phase supply is used to feed a DBR followed by a filter to avoid any switching ripple in DBR and the supply system. An isolated Zeta converter is operated to work under DCM mode. This combination of DBR and PFC converter is used to feed a LED drive. This converter is simulated in MATLAB platform. This converter provides better results such as unity power factor and less current harmonic distortion.


Author(s):  
Shadman Sakib ◽  
Ahmed Jawad Kabir ◽  
Shajal Khansur ◽  
Jewel Rana

In this paper, analysis and design of a novel single phase AC-DC CUK converter circuit has been proposed where Power Factor Correction (PFC) controller scheme has been used in order to obtain better performance than conventional converters. Closed loop technique is applied to the bridgeless converter in order to achieve low input current, Total Harmonic Distortion (THD) at input AC mains along with near unity power factor. Performance comparison between open loop and closed loop of the proposed converter is made without filtering. The problems arise with open loop is sufficiently minimized by using power factor correction controller. The performance comparison between proposed and conventional CUK AC-DC converter operating in Continuous Conduction Mode (CCM) is made based on circuit simulations using PSIM softwere.


Author(s):  
Md. Shamsul Arifin ◽  
Nur Mohammad ◽  
Mohammad Ibrahim Khalil ◽  
Mohammad Jahangir Alam

<span lang="EN-US">A new closed loop AC to DC ĈUK converter is presented in this paper. The conventional ĈUK AC to DC converter has no feedback circuit. Thereby, the output voltage of the converter changes while changing the load. The proposed closed loop converter can regulate voltage with the variation of load over a wide range. Moreover, the power factor and Total Harmonic Distortion (THD) of the supply side current found quite satisfactory from this closed loop ĈUK converter. The converter operates in four steps with a different combination of voltage polarities and switching states. The feedback path consists of a voltage control loop and a current control loop. The closed loop ĈUK converter in this study is compared with the open loop version. Additionally, the comparison is made with the conventional converter of the same topology. The effectiveness in terms of power factor and THD of the proposed converter is verified using simulation results.</span>


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2447 ◽  
Author(s):  
Jinqi Liu ◽  
Yizhou Liu ◽  
Yuan Zhuang ◽  
Cong Wang

The principles and operating characteristics of bridgeless rectifiers under different power factors are discussed with emphasis on analyzing the input current distortion. Firstly, two driving modes are analyzed and compared. Based on the results of comparison it is concluded that the complementary drive mode is a better choice in terms of reducing the current distortion when bridgeless rectifier operates on non-unity power factor. Then, the mechanism causing input current zero-crossing distortion is analyzed. The input current during the distortion is expressed by the piecewise function when a bridgeless rectifier operates under complementary drive mode. Based on the piecewise function, the harmonic analysis is performed. Besides, the relationships between the input current Total Harmonic Distortion (THD) and the filtering inductance, the input current amplitude and the power factor angle are also investigated, which is useful when designing bridgeless rectifiers and selecting the corresponding parameters. Finally, the accuracy of the theoretical analysis is verified through the simulation and experiment.


Sign in / Sign up

Export Citation Format

Share Document