scholarly journals Study on Thermal Protective Clothing for High Temperature Working Environment

2019 ◽  
Vol 7 (1) ◽  
pp. 18-23
Author(s):  
Le Thi Dung ◽  
La Thi Ngoc Anh
2013 ◽  
Vol 796 ◽  
pp. 634-638
Author(s):  
Shuai Liu ◽  
Dong Yan Wu ◽  
Xiu E Bai

High-temperature protective clothing is one kind of the most widely used protective clothing. This research regarded the thermal protective clothes for labors work in high-temperature metallurgical steel iron workshop as the study object. In the form of questionnaires, according to the actual high temperature working environment, we extracted the necessary wear performances for thermal protective clothing as factors on the questionnaire survey. Then we issued survey questionnaires to labors work in different workshop in a major metallurgical steel iron industry. By analyzing the statistical information with SPSS, we discussed the subjective performances of the overalls mainly from the protective performance and comfortable performance. The results indicated that the pure cotton overalls, which were used for the investigated metallurgical steel iron enterprise, fall short of the satisfaction requirements in all aspects, for example, thermal insulation, flame retardant, moisture vapor transmission, abrasion resistance and strength. As a result, the study could point out the drawbacks of the high-temperature overalls for ironworkers used in present. This research could have a certain guiding significance in the development and improvement on performances of high-temperature protective overalls. To sum up, this paper could provide scientific basis for future researches to improve the functionalities and wearabilities of the high-temperature protective overall for the ironworkers.


Tekstilec ◽  
2021 ◽  
Vol 64 (2) ◽  
pp. 136-148
Author(s):  
Nataliia Ostapenko ◽  
◽  
Marina Kolosnichenko ◽  
Larysa Tretiakova ◽  
Tatyana Lutsker ◽  
...  

A computational-experimental method of material selection for thermal protective clothing design is proposed in this article. The intended operating temperature of the garment lies within the range of 40−170 °С. The prereq¬uisite for the research was the lack of information regarding changes in the physical-mechanical and ergonomic characteristics of material assemblies during their use under high-temperature conditions. During the initial stage of research, there was a problem associated with the selection of the most important and the exclusion of the least significant indicators, in order to further reduce the number of experimental tests in laboratory and industrial conditions. The authors used the method of expert evaluations to solve the problems related to the selection of the most significant indicators for material assemblies. Material assemblies were formed by vary¬ing the combinations of heat-resistant, heat-insulation and lining layers of materials. Initial information for the proposed method was obtained from the experimental tests of sixteen material assemblies. According to the results of the ranking, the main parameters of material assemblies were identified as follows: the temperature range for which the use of clothing is intended, thickness, mass per unit density, rupture resistance, relative tear¬ing elongation, change in linear dimensions during mechanical loads, air permeability and change in assembly thickness during cyclic loads. It was established that the assembly that includes heat-resistant material of the Nomex comfort N.307 220 top, Nomex Serie 100 heat-insulation lining and Nomex TER 135 lining provides the necessary level of protection, reliability and ergonomics, and meets cost requirements.


2014 ◽  
Vol 14 (4) ◽  
pp. 299-307 ◽  
Author(s):  
Małgorzata Matusiak ◽  
Sylwia Kowalczyk

Abstract Thermal-insulation properties of textile materials play a significant role in material engineering of protective clothing. Thermal-insulation properties are very important from the point of view of thermal comfort of the clothing user as well as the protective efficiency against low or high temperature. Thermal protective clothing usually is a multilayer construction. Its thermal insulation is a resultant of a number of layers and their order, as well as the thermalinsulation properties of a single textile material creating particular layers. The aim of the presented work was to investigate the relationships between the thermal-insulation properties of single materials and multilayer textile packages composed of these materials. Measurement of the thermal-insulation properties of single and multilayer textile materials has been performed with the Alambeta. The following properties have been investigated: thermal conductivity, resistance and absorptivity. Investigated textile packages were composed of two, three and four layers made of woven and knitted fabrics, as well as nonwovens. On the basis of the obtained results an analysis has been carried out in order to assess the dependency of the resultant values of the thermal-insulation properties of multilayer packages on the appropriate values of particular components.


2019 ◽  
Vol 13 (11) ◽  
pp. 21
Author(s):  
Man-Jing Li ◽  
Mao Zhu ◽  
Jia-Xu Han ◽  
Yuan-Biao Zhang

The thermal protective clothing for high-temperature operation usually consists of three-layer fabrics and a gap called the air layer or Layer IV between Layer III and skin. In order to design more effective thermal protective clothing at less cost, based on the heat transfer principles, we establish heat transfer models of fabrics and air layer, which are one-dimensional nonlinear partial differential equations with constant coefficients. In the three-layer fabrics, we consider the effects of heat conduction and heat radiation in Layer I but only consider heat conduction in Layer II and Layer III. Furthermore, the heat transfer model of Layer IV is decoupled and simplified to steady-state heat conduction in Layer IV and radiation heat transfer on surface of Layer IV. According to the explicit difference schemes for the models, we use the parameters in an experiment which puts a thermal manikin in high-temperature environment for some time and measures the temperature of lateral skin at regular time, to solve the models and calculate the temperature of each layer. With MATLAB, the visual interface of three-dimensional temperature distribution is provided, which is reference for functional design of thermal protective clothing. We also compare the simulation result of skin surface with the experimental data. The results show that at the same position, the temperature rises over time but with decreasing rate and finally reaches the steady state. Moreover, at one moment after reaching the steady state, the temperature has a gradual decrease with the increase of distance from the external environment.


2018 ◽  
Vol 89 (16) ◽  
pp. 3244-3259 ◽  
Author(s):  
Sumit Mandal ◽  
Simon Annaheim ◽  
Andre Capt ◽  
Jemma Greve ◽  
Martin Camenzind ◽  
...  

Fabric systems used in firefighters' thermal protective clothing should offer optimal thermal protective and thermo-physiological comfort performances. However, fabric systems that have very high thermal protective performance have very low thermo-physiological comfort performance. As these performances are inversely related, a categorization tool based on these two performances can help to find the best balance between them. Thus, this study is aimed at developing a tool for categorizing fabric systems used in protective clothing. For this, a set of commercially available fabric systems were evaluated and categorized. The thermal protective and thermo-physiological comfort performances were measured by standard tests and indexed into a normalized scale between 0 (low performance) and 1 (high performance). The indices dataset was first divided into three clusters by using the k-means algorithm. Here, each cluster had a centroid representing a typical Thermal Protective Performance Index (TPPI) value and a typical Thermo-physiological Comfort Performance Index (TCPI) value. By using the ISO 11612:2015 and EN 469:2014 guidelines related to the TPPI requirements, the clustered fabric systems were divided into two groups: Group 1 (high thermal protective performance-based fabric systems) and Group 2 (low thermal protective performance-based fabric systems). The fabric systems in each of these TPPI groups were further categorized based on the typical TCPI values obtained from the k-means clustering algorithm. In this study, these categorized fabric systems showed either high or low thermal protective performance with low, medium, or high thermo-physiological comfort performance. Finally, a tool for using these categorized fabric systems was prepared and presented graphically. The allocations of the fabric systems within the categorization tool have been verified based on their properties (e.g., thermal resistance, weight, evaporative resistance) and construction parameters (e.g., woven, nonwoven, layers), which significantly affect the performance. In this way, we identified key characteristics among the categorized fabric systems which can be used to upgrade or develop high-performance fabric systems. Overall, the categorization tool developed in this study could help clothing manufacturers or textile engineers select and/or develop appropriate fabric systems with maximum thermal protective performance and thermo-physiological comfort performance. Thermal protective clothing manufactured using this type of newly developed fabric system could provide better occupational health and safety for firefighters.


2009 ◽  
pp. 717-717-17 ◽  
Author(s):  
JD Dale ◽  
EM Crown ◽  
MY Ackerman ◽  
E Leung ◽  
KB Rigakis

Sign in / Sign up

Export Citation Format

Share Document