scholarly journals Middle to late Quaternary grain size variations and sea-ice rafting on the Lomonosov Ridge

2014 ◽  
Vol 33 (1) ◽  
pp. 23672 ◽  
Author(s):  
Matt O'Regan ◽  
Emma Sellén ◽  
Martin Jakobsson
2020 ◽  
Author(s):  
Tengfei Song ◽  
Claude Hillaire-Marcel ◽  
Yanguang Liu

<p>In addition to <sup>14</sup>C-data, sedimentary excesses in <sup>230</sup>Th  (<sup>230</sup>Th<sub>xs</sub>) in central Arctic Ocean cored sequences yielded critical time constrains and sedimentation rates estimates, at least, at sites characterized by very low sedimentation rates (<< 1cm/ka). Closer to the Russian margin, where higher accumulation rates are recorded based on <sup>14</sup>C-ages, the setting of a reliable stratigraphy based on <sup>230</sup>Th<sub>xs</sub> reveals more challenging, as illustrated here, based on the analysis of  a gravity core raised from the southern Mendeleev Ridge (core ARC7-E25; -179.4°E, 79.0°N; 1200 m water depth; 320 cm long). Subsamples were collected at a 4 to 8 cm interval. Measurements included: AMS <sup>14</sup>C in foraminifera, grain size, bulk Xray mineralogy, clay mineralogy, geochemistry (C<sub>org</sub>, C<sub>inorg</sub>,<sup>13</sup>C<sub>org</sub>, <sup>238</sup>U, <sup>234</sup>U, <sup>230</sup>Th, <sup>226</sup>Ra, <sup>210</sup>Pb). Data indicate that some sediment were lost at core top. Nevertheless, <sup>14</sup>C and <sup>230</sup>Th<sub>xs  </sub>data allow estimating a mean sedimentation rate of about 6 to 7 mm/ka during the last two climatic cycles. A comparison of the <sup>230</sup>Th<sub>xs </sub>inventory and distribution pattern with those from other cores allows identifying important parameters involved in the cycling of the water column-produced <sup>230</sup>Th in this basin and its sporadic sedimentary accumulation, in particular linkages with sea-ice production over shelves, thus sea-levels, sea-ice rafting routes, grain-size and mineralogy, potential winnowing of fine fractions, role of brines and relative duration of intervals with reduced or nil sedimentation preceding <sup>230</sup>Th<sub>xs</sub>-accumulation intervals.</p>


2017 ◽  
Author(s):  
Laura Gemery ◽  
Thomas M. Cronin ◽  
Robert K. Poirier ◽  
Christof Pearce ◽  
Natalia Barrientos ◽  
...  

Abstract. Late Quaternary paleoceanographic changes in the central Arctic Ocean were reconstructed from a multicore and gravity core from the Lomonosov Ridge (Arctic Ocean) collected during the 2014 SWERUS-C3 Expedition. Ostracode assemblages dated by accelerator mass spectrometry (AMS) indicate changing sea-ice conditions and warm Atlantic Water (AW) inflow to the Arctic Ocean from ~ 50 ka to present. Key taxa used as environmental indicators include Acetabulastoma arcticum (perennial sea ice), Polycope spp. (productivity and sea ice), Krithe hunti (partially sea-ice free conditions, deep water inflow), and Rabilimis mirabilis (high nutrient, AW inflow). Results indicate seasonally sea-ice free conditions during Marine Isotope Stage (MIS) 3 (~ 57–29 ka), rapid deglacial changes in water mass conditions (15–11 ka), seasonally sea-ice free conditions during the early Holocene (~ 10–7 ka) and perennial sea ice during the late Holocene. Comparisons with faunal records from other cores from the Mendeleev and Lomonosov Ridges suggest generally similar patterns, although sea-ice cover during the last glacial maximum may have been less extensive at the southern Lomonosov Ridge at our core site (~ 85.15° N, 152° E) than farther north and towards Greenland. The new data also provide evidence for abrupt, large-scale shifts in ostracode species depth and geographical distributions during rapid climatic transitions.


2017 ◽  
Vol 13 (11) ◽  
pp. 1473-1489 ◽  
Author(s):  
Laura Gemery ◽  
Thomas M. Cronin ◽  
Robert K. Poirier ◽  
Christof Pearce ◽  
Natalia Barrientos ◽  
...  

Abstract. Late Quaternary paleoceanographic changes at the Lomonosov Ridge, central Arctic Ocean, were reconstructed from a multicore and gravity core recovered during the 2014 SWERUS-C3 Expedition. Ostracode assemblages dated by accelerator mass spectrometry (AMS) indicate changing sea-ice conditions and warm Atlantic Water (AW) inflow to the Arctic Ocean from  ∼  50 ka to present. Key taxa used as environmental indicators include Acetabulastoma arcticum (perennial sea ice), Polycope spp. (variable sea-ice margins, high surface productivity), Krithe hunti (Arctic Ocean deep water), and Rabilimis mirabilis (water mass change/AW inflow). Results indicate periodic seasonally sea-ice-free conditions during Marine Isotope Stage (MIS) 3 ( ∼  57–29 ka), rapid deglacial changes in water mass conditions (15–11 ka), seasonally sea-ice-free conditions during the early Holocene ( ∼  10–7 ka) and perennial sea ice during the late Holocene. Comparisons with faunal records from other cores from the Mendeleev and Lomonosov ridges suggest generally similar patterns, although sea-ice cover during the Last Glacial Maximum may have been less extensive at the new Lomonosov Ridge core site ( ∼  85.15° N, 152° E) than farther north and towards Greenland. The new data provide evidence for abrupt, large-scale shifts in ostracode species depth and geographical distributions during rapid climatic transitions.


2021 ◽  
Author(s):  
◽  
Anna Borisovna Albot

<p>Grain size analysis of the terrigenous fraction of a laminated diatom ooze dating back to 11.4 kyr recovered offshore Adélie Land, East Antarctic margin was used to examine variations in sediment transport, depositional environments and Holocene climate variability at the location. Interpretations were assisted by additional proxies of primary productivity (δ¹³CFA, BSi%), glacial meltwater input (δDFA) and subsurface temperature (TEXL₈₆). Three lithologic intervals with distinct grain size distributions were identified. At ~11.4 ka the diatom ooze has a clear glacimarine influence which gradually decreases until ~8.2 ka. During this time interval, coincident with the early Holocene warm period, sediment is inferred to have been delivered by glacial meltwater plumes and ice-bergs in a calving bay environment. It is suggested that the glaciers in Adélie Land had retreated to their present day grounding lines by 8.2 ka, and from then on sediment was delivered to the site primarily via the Antarctic Coastal and Slope Front Currents, largely through a suspended sediment load and erosion of the surrounding banks. Enhanced biogenic mass accumulation rates and primary production at 8.2 ka suggest onset of warmer climatic conditions, coincident with the mid-Holocene Climatic Optimum.  At ~4.5 ka, grain size distributions show a rapid increase in mud content coincident with a transient pulse of glacial meltwater and a sudden decrease in biogenic and terrigenous mass accumulation rates. The increased mud content is inferred to have been deposited under a reduced flow regime of the Antarctic Coastal and Slope Front Currents during the Neoglacial period that followed the final stages of deglaciation in the Ross Sea. It is hypothesised here that cessation of glacial retreat in the Ross Sea and the development of the modern day Ross Sea polynya resulted in enhanced Antarctic Surface Water production which led to increased sea ice growth in the Adélie Land region. The presence of sea ice led to reduced primary production and a decrease in the maximum current strength acting to advect coarser-sized terrigenous sediment to the core site during this time.  Sedimentation rates appear to have a strong correlation with the El Niño Southern Oscillation (ENSO) over the last 8.2 kyr, and are inferred to be related to changing sea ice extent and zonal wind strength. Light laminae counts (biogenic bloom events) appear to decrease in frequency during time intervals dominated by El Niño events. Spectral analysis of the greyscale values of core photographs reveals peaks in the 2-7 year band, known ENSO periods, which increase in frequency in the mid-and-late Holocene. Spectral analyses of the sand percent and natural gamma ray (NGR, a measure of clay mineral input) content of the core reveal peaks in the ~40-60, 200-300, 600, 1200-1600 and 2200-2400 year bands. The most significant of these cycles in the NGR data is in 40-60 year band may be related to internal mass balance dynamics of the Mertz Glacier or to the expansion and contraction of the Antarctic circumpolar vortex. Cycles in the 200-300 and 2200-2400 year bands are related to known periods of solar variability, which have previously been found to regulate primary productivity in Antarctic coastal waters. Cycles in the 590-625 and 1200-1600 year bands have a strong signal through the entire record and are common features of Holocene climatic records, however the origin of these cycles is still under debate between solar forcing and an independent mode of internal ocean oscillation.</p>


2017 ◽  
Vol 10 (9) ◽  
pp. 3215-3230 ◽  
Author(s):  
André Ehrlich ◽  
Eike Bierwirth ◽  
Larysa Istomina ◽  
Manfred Wendisch

Abstract. The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow). Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C. In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S) and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S), λ2 = 1650 nm (sensitive to τ), and λ3 = 2100 nm (sensitive to reff, C) are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART) during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012) were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice edge are analysed. The retrieved values of τ, reff, C, and reff, S show a continuous transition of cloud properties across snow-covered sea ice and open water and are consistent with estimates based on satellite data. It is shown that the uncertainties of the trispectral retrieval increase for high values of τ, and low reff, S but nevertheless allow the effective snow grain size in cloud-covered areas to be estimated.


2020 ◽  
Vol 117 (42) ◽  
pp. 26069-26075
Author(s):  
Anne de Vernal ◽  
Claude Hillaire-Marcel ◽  
Cynthia Le Duc ◽  
Philippe Roberge ◽  
Camille Brice ◽  
...  

The impact of the ongoing anthropogenic warming on the Arctic Ocean sea ice is ascertained and closely monitored. However, its long-term fate remains an open question as its natural variability on centennial to millennial timescales is not well documented. Here, we use marine sedimentary records to reconstruct Arctic sea-ice fluctuations. Cores collected along the Lomonosov Ridge that extends across the Arctic Ocean from northern Greenland to the Laptev Sea were radiocarbon dated and analyzed for their micropaleontological and palynological contents, both bearing information on the past sea-ice cover. Results demonstrate that multiyear pack ice remained a robust feature of the western and central Lomonosov Ridge and that perennial sea ice remained present throughout the present interglacial, even during the climate optimum of the middle Holocene that globally peaked ∼6,500 y ago. In contradistinction, the southeastern Lomonosov Ridge area experienced seasonally sea-ice-free conditions, at least, sporadically, until about 4,000 y ago. They were marked by relatively high phytoplanktonic productivity and organic carbon fluxes at the seafloor resulting in low biogenic carbonate preservation. These results point to contrasted west–east surface ocean conditions in the Arctic Ocean, not unlike those of the Arctic dipole linked to the recent loss of Arctic sea ice. Hence, our data suggest that seasonally ice-free conditions in the southeastern Arctic Ocean with a dominant Arctic dipolar pattern, may be a recurrent feature under “warm world” climate.


Sign in / Sign up

Export Citation Format

Share Document