scholarly journals Intrusion Detection Model Using Naive Bayes and Deep Learning Technique

2019 ◽  
Vol 17 (2) ◽  
pp. 215-224
Author(s):  
Mohammed Tabash ◽  
Mohamed Abd Allah ◽  
Bella Tawfik

The increase of security threats and hacking the computer networks are one of the most dangerous issues should treat in these days. Intrusion Detection Systems (IDSs), are the most appropriate methods to prevent and detect the attacks of networks and computer systems. This study presents several techniques to discover network anomalies using data mining tasks, Machine learning technology and dependence of artificial intelligence techniques. In this research, the smart hybrid model was developed to explore any penetrations inside the network. The model divides into two basic stages. The first stage includes the Genetic Algorithm (GA) in selecting the characteristics with depends on a process of extracting, Discretize And dimensionality reduction through Proportional K-Interval Discretization (PKID) and Fisher Linear Discriminant Analysis (FLDA) on respectively. At the end of the first stage combining Naïve Bayes classifier (NB) and Decision Table (DT) using NSL-KDD data set divided into two separate groups for training and testing. The second stage completely depends on the first stage outputs (predicted class) and reclassified with multilayer perceptrons using Deep Learning4J (DL) and the use of algorithm Stochastic Gradient Descent (SGD). In order to improve the performance in terms of the accuracy in classification of penetrations, raising the average of discovering and reducing the false alarms. The comparison of the proposed model and conventional models show the superiority of the proposed model and the previous conventional hybrid models. The result of the proposed model is 99.9325 of classification accuracy, the rate of detection is 99.9738 and 0.00093 of false alarms

2018 ◽  
Vol 246 ◽  
pp. 03027
Author(s):  
Manfu Ma ◽  
Wei Deng ◽  
Hongtong Liu ◽  
Xinmiao Yun

Due to using the single classification algorithm can not meet the performance requirements of intrusion detection, combined with the numerical value of KNN and the advantage of naive Bayes in the structure of data, an intrusion detection model KNN-NB based on KNN and Naive Bayes hybrid classification algorithm is proposed. The model first preprocesses the NSL-KDD intrusion detection data set. And then by exploiting the advantages of KNN algorithm in data values, the model calculates the distance between the samples according to the feature items and selects the K sample data with the smallest distance. Finally, by naive Bayes to get the final result. The experimental results on the NSL-KDD dataset show that the KNN-NB algorithm can meet the requirement of balanced performance than the traditional KNN and Naive Bayes algorithm in term of accuracy, sensitivity, false detection rate, specificity, and missed detection rate.


2016 ◽  
Vol 4 (1) ◽  
pp. 13-25 ◽  
Author(s):  
Z. Muda ◽  
W. Yassin ◽  
M.N. Sulaiman ◽  
N.I. Udzir

Intrusion detection systems (IDS) effectively complement other security mechanisms by detecting malicious activities on a computer or network, and their development is evolving at an extraordinary rate. The anomaly-based IDS, which uses learning algorithms, allows detection of unknown attacks. Unfortunately, the major challenge of this approach is to minimize false alarms while maximizing detection and accuracy rates. To overcome this problem, we propose a hybrid learning approach through the combination of K-Means clustering and Naïve Bayes classification. K-Means clustering is used to cluster all data into the corresponding group based on data behavior, i.e. malicious and non-malicious, while the Naïve Bayes classifier is used to classify clustered data into correct categories, i.e. R2L, U2R, Probe, DoS and Normal. Experiments have been carried out to evaluate the performance of the proposed approach using KDD Cup ’99 dataset. The results showed that our proposed approach significantly improves the accuracy, detection rate up to 99.6% and 99.8%, respectively, while decreasing false alarms to 0.5%.


Author(s):  
Zena Abdulmunim Aziz ◽  
◽  
Adnan Mohsin Abdulazeez ◽  

The rapid development of technology reveals several safety concerns for making life more straightforward. The advance of the Internet over the years has increased the number of attacks on the Internet. The IDS is one supporting layer for data protection. Intrusion Detection Systems (IDS) offer a healthy market climate and prevent misgivings in the network. Recently, IDS has been used to recognize and distinguish safety risks using Machine Learning (ML). This paper proposed a comparative analysis of the different ML algorithms used in IDS and aimed to identify intrusions with SVM, J48, and Naive Bayes. Intrusion is also classified. Work with the KDD-CUP data set, and their performance has been checked with the WEKA software. A comparison of techniques such as J48, SVM, and Naïve Bayes showed that the accuracy of j48 is the higher one which was (99.96%).


2010 ◽  
Vol 2 (2) ◽  
pp. 12-25 ◽  
Author(s):  
Dewan Md Singh ◽  
Nouria Harbi ◽  
Mohammad Zahidur Rahman

2020 ◽  
Vol 19 ◽  
pp. 153303382090982
Author(s):  
Melek Akcay ◽  
Durmus Etiz ◽  
Ozer Celik ◽  
Alaattin Ozen

Background and Aim: Although the prognosis of nasopharyngeal cancer largely depends on a classification based on the tumor-lymph node metastasis staging system, patients at the same stage may have different clinical outcomes. This study aimed to evaluate the survival prognosis of nasopharyngeal cancer using machine learning. Settings and Design: Original, retrospective. Materials and Methods: A total of 72 patients with a diagnosis of nasopharyngeal cancer who received radiotherapy ± chemotherapy were included in the study. The contribution of patient, tumor, and treatment characteristics to the survival prognosis was evaluated by machine learning using the following techniques: logistic regression, artificial neural network, XGBoost, support-vector clustering, random forest, and Gaussian Naive Bayes. Results: In the analysis of the data set, correlation analysis, and binary logistic regression analyses were applied. Of the 18 independent variables, 10 were found to be effective in predicting nasopharyngeal cancer-related mortality: age, weight loss, initial neutrophil/lymphocyte ratio, initial lactate dehydrogenase, initial hemoglobin, radiotherapy duration, tumor diameter, number of concurrent chemotherapy cycles, and T and N stages. Gaussian Naive Bayes was determined as the best algorithm to evaluate the prognosis of machine learning techniques (accuracy rate: 88%, area under the curve score: 0.91, confidence interval: 0.68-1, sensitivity: 75%, specificity: 100%). Conclusion: Many factors affect prognosis in cancer, and machine learning algorithms can be used to determine which factors have a greater effect on survival prognosis, which then allows further research into these factors. In the current study, Gaussian Naive Bayes was identified as the best algorithm for the evaluation of prognosis of nasopharyngeal cancer.


2017 ◽  
Vol 5 (8) ◽  
pp. 260-266
Author(s):  
Subhankar Manna ◽  
Malathi G.

Healthcare industry collects huge amount of unclassified data every day.  For an effective diagnosis and decision making, we need to discover hidden data patterns. An instance of such dataset is associated with a group of metabolic diseases that vary greatly in their range of attributes. The objective of this paper is to classify the diabetic dataset using classification techniques like Naive Bayes, ID3 and k means classification. The secondary objective is to study the performance of various classification algorithms used in this work. We propose to implement the classification algorithm using R package. This work used the dataset that is imported from the UCI Machine Learning Repository, Diabetes 130-US hospitals for years 1999-2008 Data Set. Motivation/Background: Naïve Bayes is a probabilistic classifier based on Bayes theorem. It provides useful perception for understanding many algorithms. In this paper when Bayesian algorithm applied on diabetes dataset, it shows high accuracy. Is assumes variables are independent of each other. In this paper, we construct a decision tree from diabetes dataset in which it selects attributes at each other node of the tree like graph and model, each branch represents an outcome of the test, and each node hold a class attribute. This technique separates observation into branches to construct tree. In this technique tree is split in a recursive way called recursive partitioning. Decision tree is widely used in various areas because it is good enough for dataset distribution. For example, by using ID3 (Decision tree) algorithm we get a result like they are belong to diabetes or not. Method: We will use Naïve Bayes for probabilistic classification and ID3 for decision tree.  Results: The dataset is related to Diabetes dataset. There are 18 columns like – Races, Gender, Take_metformin, Take_repaglinide, Insulin, Body_mass_index, Self_reported_health etc. and 623 rows. Naive Bayes Classifier algorithm will be used for getting the probability of having diabetes or not. Here Diabetes is the class for Diabetes data set. There are two conditions “Yes” and “No” and have some personal information about the patient like - Races, Gender, Take_metformin, Take_repaglinide, Insulin, Body_mass_index, Self_reported_health etc. We will see the probability that for “Yes” what unit of probability and for “No” what unit of probability which is given bellow. For Example: Gender – Female have 0.4964 for “No” and 0.5581 for “Yes” and for Male 0.5035 is for “No” and 0.4418 for “Yes”. Conclusions: In this paper two algorithms had been implemented Naive Bayes Classifier algorithm and ID3 algorithm. From Naive Bayes Classifier algorithm, the probability of having diabetes has been predicted and from ID3 algorithm a decision tree has been generated.


Sign in / Sign up

Export Citation Format

Share Document