Specification for bed pans of perfection type (adult size)

1955 ◽  
Keyword(s):  
2020 ◽  
Vol 646 ◽  
pp. 79-92
Author(s):  
RE Scheibling ◽  
R Black

Population dynamics and life history traits of the ‘giant’ limpet Scutellastra laticostata on intertidal limestone platforms at Rottnest Island, Western Australia, were recorded by interannual (January/February) monitoring of limpet density and size structure, and relocation of marked individuals, at 3 locations over periods of 13-16 yr between 1993 and 2020. Limpet densities ranged from 4 to 9 ind. m-2 on wave-swept seaward margins of platforms at 2 locations and on a rocky notch at the landward margin of the platform at a third. Juvenile recruits (25-55 mm shell length) were present each year, usually at low densities (<1 m-2), but localized pulses of recruitment occurred in some years. Annual survival rates of marked limpets varied among sites and cohorts, ranging from 0.42 yr-1 at the notch to 0.79 and 0.87 yr-1 on the platforms. A mass mortality of limpets on the platforms occurred in 2003, likely mediated by thermal stress during daytime low tides, coincident with high air temperatures and calm seas. Juveniles grew rapidly to adult size within 2 yr. Asymptotic size (L∞, von Bertalanffy growth model) ranged from 89 to 97 mm, and maximum size from 100 to 113 mm, on platforms. Growth rate and maximum size were lower on the notch. Our empirical observations and simulation models suggest that these populations are relatively stable on a decadal time scale. The frequency and magnitude of recruitment pulses and high rate of adult survival provide considerable inertia, enabling persistence of these populations in the face of sporadic climatic extremes.


2020 ◽  
Vol 31 (8) ◽  
pp. 803-816
Author(s):  
Umberto di Porzio

AbstractThe environment increased complexity required more neural functions to develop in the hominin brains, and the hominins adapted to the complexity by developing a bigger brain with a greater interconnection between its parts. Thus, complex environments drove the growth of the brain. In about two million years during hominin evolution, the brain increased three folds in size, one of the largest and most complex amongst mammals, relative to body size. The size increase has led to anatomical reorganization and complex neuronal interactions in a relatively small skull. At birth, the human brain is only about 20% of its adult size. That facilitates the passage through the birth canal. Therefore, the human brain, especially cortex, develops postnatally in a rich stimulating environment with continuous brain wiring and rewiring and insertion of billions of new neurons. One of the consequence is that in the newborn brain, neuroplasticity is always turned “on” and it remains active throughout life, which gave humans the ability to adapt to complex and often hostile environments, integrate external experiences, solve problems, elaborate abstract ideas and innovative technologies, store a lot of information. Besides, hominins acquired unique abilities as music, language, and intense social cooperation. Overwhelming ecological, social, and cultural challenges have made the human brain so unique. From these events, as well as the molecular genetic changes that took place in those million years, under the pressure of natural selection, derive the distinctive cognitive abilities that have led us to complex social organizations and made our species successful.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
G A Rivera-Figueroa ◽  
J A Büchner-Miranda ◽  
L P Salas-Yanquin ◽  
J A Montory ◽  
V M Cubillos ◽  
...  

ABSTRACT Free-living, planktonic larvae can be vulnerable to capture and ingestion by adult suspension-feeders. This is particularly the case for larvae that settle gregariously in benthic environments where suspension-feeders occur at high densities. Larvae of gregarious suspension-feeding species are at particularly high risk, as adults of their own species often serve as cues for metamorphosis. We conducted laboratory experiments to assess the extent to which adults of the suspension-feeding caenogastropod Crepipatella peruviana would capture and ingest their own larvae. Experiments were conducted with adults of different sizes, with larvae of different ages and sizes, and in the presence or absence of phytoplankton. Adults captured larvae in all experiments. The presence of microalgae in the water did not influence the extent of larval capture. On average, 39% of larvae were captured during the 3-h feeding periods, regardless of adult size. However, up to 34% of the larvae that were captured on the gill were later discarded as pseudofaeces; the other 64% were ingested. The extent of capture by adults was not related to adult size, or to larval size and, thus, to larval age. Our results suggest that the filtration of congeneric larvae by adult C. peruviana is a result of accidental capture rather than a deliberate feeding preference. Such ingestion could, however, still be an important source of larval mortality, especially when the advanced larvae of this species are searching for a suitable substrate for metamorphosis.


Parasitology ◽  
1973 ◽  
Vol 66 (2) ◽  
pp. 355-365 ◽  
Author(s):  
C. A. Hopkins ◽  
P. M. Grant ◽  
Helen Stallard

The effect of oxyclozanide (2,2′-dihydroxy-3,3′,5,5′,6-pentachlorobenzanilide) on Hymenolepis microstoma in the bile duct of mice, and H. diminuta in the small intestine of mice and rats was measured. Oxyclozanide at doses as low as 4mg/kg removed 13-day-old H. diminuta and caused no obvious harmful effect to the rat host up to the maximum level (256 mg/kg) tested. Worms were displaced and degenerating within 1 h. Results in mice were more difficult to assess because of the immune response, but similar total amounts of oxyclozanide caused destrobilation and loss of 7-day-old H. diminuta. Oxyclozanide was less effective against 21-day-old H. microstoma attached in the bile duct. Approximately half the strobila was lost following dosing at 5 mg/kg and progressively greater amounts as the dose level was increased. At 50 mg/kg worm loss commenced but even at 150 mg/kg 25 % of worms survived. The time taken to regrow to the original adult size varied but was complete within 7–9 days at levels up to 25 mg/kg. Double dosing at 5-day intervals did not enhance the effect of a single dose. The apparent existence of a sensitivity gradient down the strobila in H. microstoma is discussed.


1991 ◽  
Vol 48 (6) ◽  
pp. 1015-1021 ◽  
Author(s):  
Jan Henning L'Abée-Lund

I compared adult size and sea age at sexual maturity among nine populations of anadromous brown trout, Salmo trutta, in two Norwegian rivers to determine the extent of inter- and intrariverine variations. Variation in the mean length of spawners and in the mean sea age at sexual maturity were mainly dependent on the variations found within rather than between rivers. Mean lengths and mean age at maturity of males increased significantly with increasing altitude of the spawning area and with migration distance in freshwater. In females, positive significant correlations were found with mean lengths and altitude of the spawning area and with mean sea age at maturity and both spawning site altitude and migration distance. Mean lengths and ages of males and females were not significantly correlated with the rate of water discharge in the streams during spawning. The size of gravel substrate for spawning was of minor importance in explaining interpopulation variation in mean female size. The increase noted in mean length and in mean sea age at maturity of both males and females is probably an adaptation to greater energy expenditure to reach the uppermost natal spawning areas.


2014 ◽  
Vol 60 (6) ◽  
pp. 700-711 ◽  
Author(s):  
Nina A. Vasilieva ◽  
Ekaterina V. Pavlova ◽  
Sergey V. Naidenko ◽  
Andrey V. Tchabovsky

Abstract Life-history theory predicts that in hibernators age of maturation is related positively to body size and negatively to the duration of active season aboveground. Yellow souslik is a large-sized ground squirrel with long hibernation, which suggests late maturation. We used four-year field observations of marked individuals to determine the age of maturation in males through analysis of age-dependent variation in body size, mass, androgen status, timing of spring emergence, ranging patterns and social behavior during the mating season. Yearling males were smaller, lighter, had lower level of fecal testosterone, emerged later and had smaller home ranges than older males. Social activity and the number of females encountered did not differ between age classes. After the second hibernation none of the studied parameters varied with age. Cluster analysis revealed two behavioral tactics: “active” males (adults only) emerged earlier, ranged more widely, initiated more contacts, encountered more females and were heavier than “passive” males (both yearling and adult). Thus, males of S. fulvus reached adult size and matured after two hibernations, which is relatively fast for such a big species with short active period. Indirect evidence for copulations and high variation among yearlings in all parameters suggest that some of them might successfully compete with adults. Active tactic of wandering and searching for females is energetically costly, and probably only adult males in good physical condition can afford it, whereas passive tactic of residing is energy saving and good for adults in poor condition and for yearlings that are continuing to grow.


Behaviour ◽  
1988 ◽  
Vol 104 (3-4) ◽  
pp. 202-232 ◽  
Author(s):  
John G. Robinson

AbstractThe extent to which population demography determines the age and sex composition of primate groups was examined using data from a population of wedge-capped capuchin monkeys Cebus olivaceus in central Venezuela. Demographic parameters were derived from censuses of individually recognized, aged, and sexed individuals living in nine groups over a ten year period. Animals were aged by extrapolation from census data. Animals of both sexes were classed as infants during their first year, and juveniles until they reached six years of age. Females reach sexual maturity at this time, while males were classed as subadults until they reached full adult size at age 12. Adulthood lasts at least 30 years in females, at least 24 years in males. Age-sex class specific mortality and fecundity rates generated a life table which indicated that the population was increasing (r = 0.087) between 1977 and 1986. The age and sex composition of the nine groups was described annually. On average, non-adults made up 60% of a group, with this percentage increasing with group size. There were more females than males in all groups in all years. The strong female-biased adult sex ratio (1:4.4) was a consequence of a biased birth sex ratio (1:1.9), higher female than male survivorship especially between the ages of 3 and 7 when males were dispersing, and a pronounced sexual bimaturism. The stable age distribution derived from the life table successfully predicted the observed average distribution of age-sex categories in groups. This suggests that the group structure of Cebus olivaceus groups is not a consequence of intragroup social interactions, but results from demographic parameters.


2009 ◽  
Vol 100 (4) ◽  
pp. 467-479 ◽  
Author(s):  
A.K. Al-Wahaibi ◽  
J.G. Morse

AbstractThe biology of the immature stages and adult eclosion of Ufens principalis Owen, an important parasitoid of Homalodisca eggs in southern California, were studied. The duration of the egg, larval and pupal stages at 26.7°C were 0–1, 7 and 9 days, respectively. Sacciform larvae, which developed gregariously within host eggs, were motile until about five days of age, and then became sessile. Parasitized host eggs changed from whitish and soft when freshly-laid to yellow-orange and hard at five days and older. This change was accompanied by formation of septal walls separating the mature larvae and pupae. The rate of immature development had a strong positive linear relationship (R2=0.853, n=98) with temperatures in the range of 20.0–30.3°C. The theoretical minimum threshold for immature development was 13.5°C, and the required heat units were 241.0 degree-days. Adult eclosion from host eggs occurred mostly (85%) on the first two days of emergence. Although most females emerged during the morning hours (0600–1200 h), males tended to emerge earlier than females with equal emergence during the morning and late night hours (2400–0600 h). The rate of successful adult emergence was high (88%). The ratio of eclosed adults to the number of exit holes was 1.18, indicating that most adults tended to independently cut their exit holes. The number of exit holes had a strong negative relationship (R2=0.711, n=125) with exit hole size, suggesting that larger numbers of developing immatures per host egg result in an overall decrease in adult size.


2008 ◽  
Vol 86 (7) ◽  
pp. 648-658 ◽  
Author(s):  
A. Aisenberg ◽  
F. G. Costa

Allocosa brasiliensis (Petrunkevitch, 1910) is a nocturnal wolf spider inhabitant of coastal dunes. Pitfall-trap data suggested the occurrence of two sympatric and synchronic morphs, with differences in adult size and abdominal design (minor and major morphs). Previous studies performed with the major morph of A. brasiliensis, postulated courtship-role and sexual size dimorphism reversal for this spider. In the present study, we compare data on development and morphology and test reproductive isolation between morphs of A. brasiliensis, with the hypotheses that the two morphs are reproductively isolated and both show courtship-role reversal. As had been reported for the major morph of A. brasiliensis, the minor-morph females approached the burrows of minor-morph males, entered, initiated courtship, and after copulation, males closed their burrows with female cooperation from the inside. Females did not court or copulate with males belonging to the other morph and, in two cases, major-morph females cannibalised minor-morph males. Morphometrical and developmental data showed differences between morphs. The occurrence of copulation only between individuals of the same morph confirm reproductive isolation, supporting the occurrence of two species. Morphological and behavioural data are consistent with courtship-role-reversal hypotheses for the minor morph, constituting the second report in spiders of this atypical behaviour.


2017 ◽  
Vol 14 (130) ◽  
pp. 20170202 ◽  
Author(s):  
Joseph Libby ◽  
Arsalan Marghoub ◽  
David Johnson ◽  
Roman H. Khonsari ◽  
Michael J. Fagan ◽  
...  

During the first year of life, the brain grows rapidly and the neurocranium increases to about 65% of its adult size. Our understanding of the relationship between the biomechanical forces, especially from the growing brain, the craniofacial soft tissue structures and the individual bone plates of the skull vault is still limited. This basic knowledge could help in the future planning of craniofacial surgical operations. The aim of this study was to develop a validated computational model of skull growth, based on the finite-element (FE) method, to help understand the biomechanics of skull growth. To do this, a two-step validation study was carried out. First, an in vitro physical three-dimensional printed model and an in silico FE model were created from the same micro-CT scan of an infant skull and loaded with forces from the growing brain from zero to two months of age. The results from the in vitro model validated the FE model before it was further developed to expand from 0 to 12 months of age. This second FE model was compared directly with in vivo clinical CT scans of infants without craniofacial conditions ( n = 56). The various models were compared in terms of predicted skull width, length and circumference, while the overall shape was quantified using three-dimensional distance plots. Statistical analysis yielded no significant differences between the male skull models. All size measurements from the FE model versus the in vitro physical model were within 5%, with one exception showing a 7.6% difference. The FE model and in vivo data also correlated well, with the largest percentage difference in size being 8.3%. Overall, the FE model results matched well with both the in vitro and in vivo data. With further development and model refinement, this modelling method could be used to assist in preoperative planning of craniofacial surgery procedures and could help to reduce reoperation rates.


Sign in / Sign up

Export Citation Format

Share Document