Vegetation types with Quercus ithaburensis subsp. macrolepis in Greece

2020 ◽  
Vol 46 (1) ◽  
pp. 17-40
Author(s):  
Michalis Theocharopoulos ◽  
Anastasia Pantera ◽  
Georgios Fotiadis ◽  
Andreas Papadopoulos
Keyword(s):  
2020 ◽  
Vol 45 (3) ◽  
pp. 537-543
Author(s):  
Karinne Sampaio Valdemarin ◽  
Jair Eustáquio Quintino Faria ◽  
Fiorella Fernanda Mazine ◽  
Vinicius Castro Souza

Abstract—A new species of Eugenia from the Atlantic forest of Brazil is described and illustrated. Eugenia flavicarpa is restricted to the Floresta de Tabuleiro (lowland forests) of Espírito Santo state and is nested in Eugenia subg. Pseudeugenia. Considering all other species of the subgenus that occur in forest vegetation types of the Atlantic forest phytogeographic domain, Eugenia flavicarpa can be distinguished mainly by the combination of smooth leaves with indumentum on both surfaces, with two marginal veins, usually ramiflorous inflorescences, pedicels 4.5‐9.7 mm long, flower buds 3.5‐4 mm in diameter, and by the calyx lobes that are 2‐3 mm long with rounded to obtuse apices. Morphological analyses were performed to explore the significance of quantitative diagnostic features between the new species and the closely related species, Eugenia farneyi. Notes on the habitat, distribution, phenology, and conservation status of Eugenia flavicarpa are provided, as well as a key for all species of Eugenia subg. Pseudeugenia from forest vegetation of the Atlantic forest phytogeographic domain.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Chen ◽  
Xue-wen Lei ◽  
Han-lin Zhang ◽  
Zhi Lin ◽  
Hui Wang ◽  
...  

AbstractThe problems caused by the interaction between slopes and hydrologic environment in traffic civil engineering are very serious in the granite residual soil area of China, especially in Guangdong Province. Against the background of two heavy rainfall events occurring during a short period due to a typhoon making landfall twice or even two typhoons consecutively making landfall, laboratory model tests were carried out on the hydrological effects of the granite residual soil slope considering three vegetation types under artificial rainfall. The variation in slope surface runoff, soil moisture content and rain seepage over time was recorded during the tests. The results indicate that surface vegetation first effectively reduces the splash erosion impact of rainwater on slopes and then influences the slope hydrological effect through rainwater forms adjustment. (1) The exposed slope has weak resistance to two consecutive heavy rains, the degree of slope scouring and soil erosion damage will increase greatly during the second rainfall. (2) The multiple hindrances of the stem leaf of Zoysia japonica plays a leading role in regulating the hydrological effect of slope, the root system has little effect on the permeability and water storage capacity of slope soil, but improves the erosion resistance of it. (3) Both the stem leaf and root system of Nephrolepis cordifolia have important roles on the hydrological effect. The stem leaf can stabilize the infiltration of rainwater, and successfully inhibit the surface runoff under continuous secondary heavy rainfall. The root system significantly enhances the water storage capacity of the slope, and greatly increases the permeability of the slope soil in the second rainfall, which is totally different from that of the exposed and Zoysia japonica slopes. (4) Zoysia is a suitable vegetation species in terms of slope protection because of its comprehensive slope protection effect. Nephrolepis cordifolia should be cautiously planted as slope protection vegetation. Only on slopes with no stability issues should Nephrolepis cordifolia be considered to preserve soil and water.


2020 ◽  
Vol 13 (1) ◽  
pp. 41
Author(s):  
Iván Barbero-Bermejo ◽  
Gabriela Crespo-Luengo ◽  
Ricardo Enrique Hernández-Lambraño ◽  
David Rodríguez de la Cruz ◽  
José Ángel Sánchez-Agudo

The design of conservation plans for the improvement of habitats of threatened species constitutes one of the most plausible possibilities of intervention in the structure and composition of the landscape of a large territory. In this work we focus on the Iberian lynx in order to establish potential ecological corridors using ecoinformatic tools from the GIS environment to improve connectivity between the existing natural spaces within the scope of its historical distribution. We processed 669 records of the presence of the lynx and six predictor variables linked to the habitat of the species. With this, corridors have been generated between natural areas. The determination of possible bottlenecks or dangerous areas (e.g., hitches on highways) allows for focusing efforts on their conservation. This type of approach seeks to improve efficiency in the design of measures aimed at expanding the territory’s capacity to host its populations, improving both its viability and that of all the other species that are linked to it. The proposals for action on the specific areas defined by the models elaborated in this work would imply interventions on the land uses and existing vegetation types in order to improve connectivity throughout the territory and increase the resilience of its ecosystems.


2021 ◽  
Vol 18 (5) ◽  
pp. 1192-1207
Author(s):  
Marcelo Leandro Bueno ◽  
Vanessa Leite Rezende ◽  
Luiza Fonseca A. De Paula ◽  
João Augusto Alves Meira-Neto ◽  
José Roberto Rodrigues Pinto ◽  
...  

Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Willem A. Nieman ◽  
Brian W. van Wilgen ◽  
Alison J. Leslie

Abstract Background Fire is an important process that shapes the structure and functioning of African savanna ecosystems, and managers of savanna protected areas use fire to achieve ecosystem goals. Developing appropriate fire management policies should be based on an understanding of the determinants, features, and effects of prevailing fire regimes, but this information is rarely available. In this study, we report on the use of remote sensing to develop a spatially explicit dataset on past fire regimes in Majete Wildlife Reserve, Malawi, between 2001 and 2019. Moderate Resolution Imaging Spectroradiometer (MODIS) images were used to evaluate the recent fire regime for two distinct vegetation types in Majete Wildlife Reserve, namely savanna and miombo. Additionally, a comparison was made between MODIS and Visible Infrared Imager Radiometer Suite (VIIRS) images by separately evaluating selected aspects of the fire regime between 2012 and 2019. Results Mean fire return intervals were four and six years for miombo and savanna vegetation, respectively, but the distribution of fire return intervals was skewed, with a large proportion of the area burning annually or biennially, and a smaller proportion experiencing much longer fire return intervals. Variation in inter-annual rainfall also resulted in longer fire return intervals during cycles of below-average rainfall. Fires were concentrated in the hot-dry season despite a management intent to restrict burning to the cool-dry season. Mean fire intensities were generally low, but many individual fires had intensities of 14 to 18 times higher than the mean, especially in the hot-dry season. The VIIRS sensors detected many fires that were overlooked by the MODIS sensors, as images were collected at a finer scale. Conclusions Remote sensing has provided a useful basis for reconstructing the recent fire regime of Majete Wildlife Reserve, and has highlighted a current mismatch between intended fire management goals and actual trends. Managers should re-evaluate fire policies based on our findings, setting clearly defined targets for the different vegetation types and introducing flexibility to accommodate natural variation in rainfall cycles. Local evidence of the links between fires and ecological outcomes will require further research to improve fire planning.


2021 ◽  
Vol 13 (4) ◽  
pp. 669
Author(s):  
Hanchen Duan ◽  
Xian Xue ◽  
Tao Wang ◽  
Wenping Kang ◽  
Jie Liao ◽  
...  

Alpine meadow and alpine steppe are the two most widely distributed nonzonal vegetation types in the Qinghai-Tibet Plateau. In the context of global climate change, the differences in spatial-temporal variation trends and their responses to climate change are discussed. It is of great significance to reveal the response of the Qinghai-Tibet Plateau to global climate change and the construction of ecological security barriers. This study takes alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau as the research objects. The normalized difference vegetation index (NDVI) data and meteorological data were used as the data sources between 2000 and 2018. By using the mean value method, threshold method, trend analysis method and correlation analysis method, the spatial and temporal variation trends in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau were compared and analyzed, and their differences in the responses to climate change were discussed. The results showed the following: (1) The growing season length of alpine meadow was 145~289 d, while that of alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau was 161~273 d, and their growing season lengths were significantly shorter than that of alpine meadow. (2) The annual variation trends of the growing season NDVI for the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau increased obviously, but their fluctuation range and change rate were significantly different. (3) The overall vegetation improvement in the Qinghai-Tibet Plateau was primarily dominated by alpine steppe and alpine meadow, while the degradation was primarily dominated by alpine meadow. (4) The responses between the growing season NDVI and climatic factors in the alpine meadow, alpine steppe and the overall vegetation of the Qinghai-Tibet Plateau had great spatial heterogeneity in the Qinghai-Tibet Plateau. These findings provide evidence towards understanding the characteristics of the different vegetation types in the Qinghai-Tibet Plateau and their spatial differences in response to climate change.


Sign in / Sign up

Export Citation Format

Share Document