scholarly journals Antimicrobial Susceptibility of Pseudomonas aeruginosa Isolated from Hospital Environment

2021 ◽  
pp. 40-50
Author(s):  
Munzer Ullah ◽  
Hayat Ullah ◽  
Khaliq Noor ◽  
Maliha Sarfraz ◽  
Misbah Ullah Khan ◽  
...  

Pseudomonas aeruginosa is a leading cause of disease and death particularly in cystic fibrosis patients and also considered resistance to chemotherapeutic agents. Therefore, it is very difficult to remove the Pseudomonas aeruginosa from the hospital environment by using simple techniques. In the contemporary study, biofilm mediated mechanism of various antimicrobial responses were analyzed. For this purpose, different Pseudomonas aeruginosa clinical isolates were collected from Pakistan medical institute Islamabad (PIMS) hospital and were investigated for pellicle formation. Pseudomonas aeruginosa isolates were studied for different groups of antibiotics including imipenem, meropenem, ceftazidime, amikacin, tobramycin, gentamicin, piperacillin, cefoperazone, and cefotaxime. The goal was to check antimicrobial susceptibility of pseudomonas aeruginosa which shows resistant to tobramycin, imipenem, meropenem, amikacin, gentamicin, cefotaxime, piperacillin, ceftazidime, cefoperazone. Additionally, in this study, Pseudomonas aeruginosa strains were also investigated for pellicle formation. In conclusion, this research work wills highlights the useful mechanism of antibiotics resistance to Pseudomonas aeruginosa infections in clinical practice. Keywords: Antibiotics, Pseudomonas aeruginosa, antibiotics, Biofilm, Peliclle.

2021 ◽  
Vol 16 (2) ◽  
pp. 131-137
Author(s):  
A.F. Obajuluwa ◽  
A. Kefas ◽  
S.K. Parom

Background: Freshly consumed vegetables are considered to have more nutritional value than cooked ones. However, they are a potential source of foodborne illnesses due to possible microbial contamination, this poses safety threat.Objectives: This study was carried out to determine the bacteriological quality of ready-to-eat vegetables sold in Mohammadu Gumi market, Kaduna and to determine the antibiotics resistance pattern of the bacteria isolates.Methods: A total of 40 samples of cabbage were collected. Gram staining, growth on selective media and biochemical tests were carried out to identify the isolates. Antimicrobial susceptibility testing was done using the Kirby-Bauer agar disc diffusion method. Methicillin resistant Staphylococcus aureus isolates were detected with the use of cefoxitin disc agar diffusion test.Results: A total of 46 bacteria isolates were obtained with a total colony count range from 4 – 9 x 106CFU/ml. The following bacteria were isolated:   aureus (41.3%), Escherichia coli (28.3%), Salmonella spp (19.6%),  Pseudomonas aeruginosa (8.7%) and Serratia spp (2.2%). The result of antimicrobial susceptibility test showed thatthe isolates were highly susceptible to ofloxacin: Staphylococcus aureus, Pseudomonas aeruginosa, Serratia spp (100%), E. coli (92.3%) and Salmonella spp (87.5%). The isolates were all resistant to penicillin and ampicillin while 89.5% of the Staphylococcus aureus isolates were phenotypically methicillin resistant Staphylococcus aureus.Conclusion: This study showed that the vegetables (cabbage) were highly contaminated with antibiotic resistant bacteria, this can be a source of infection to the consumers and a potential means of transmitting multidrug resistant bacteria strains in the community.


2020 ◽  
Vol 99 (5) ◽  
pp. 493-497
Author(s):  
M. M. Aslanova ◽  
T. V. Gololobova ◽  
K. Yu. Kuznetsova ◽  
Tamari R. Maniya ◽  
D. V. Rakitina ◽  
...  

Introduction. The purpose of our work was to justify the need to improve the legislative, regulatory and methodological framework and preventative measures in relation to the spread of parasitic infections in the provision of medical care. There is a wide range of pathogens of parasitic infestations that are transmitted to humans through various medical manipulations and interventions carried out in various medical institutions. Contaminated care items and furnishings, medical instruments and equipment, solutions for infusion therapy, medical personnel’s clothing and hands, reusable medical products, drinking water, bedding, suture and dressing materials can serve as a major factor in the spread of parasitic infections in the provision of medical care. Purpose of research is the study of the structure and SMP of parasitic origin, circulating on the objects of the production environment in multi-profile medical and preventive institutions of stationary type in order to prevent the occurrence of their spread within medical institutions. Material and methods. The material for the study was flushes taken from the production environment in 3 multi-profile treatment and prevention institutions of inpatient type: a multi-specialty hospital, a maternity hospital and a hospital specializing in the treatment of patients with intestinal diseases for the eggs of worms and cysts of pathogenic protozoa. Results. During the 2-year monitoring of medical preventive institutions, a landscape of parasitic contamination was found to be obtained from the flushes taken from the production environment objects in the premises surveyed as part of the research work. Discussions. In the course of research, the risk of developing ISMP of parasitic origin was found to be determined by the degree of epidemiological safety of the hospital environment, the number and invasiveness of treatment and diagnostic manipulations and various medical technologies. Conclusion. It is necessary to conduct an expert assessment of regulatory and methodological documents in the field of epidemiological surveillance and sanitary and hygienic measures for the prevention of medical aid related infections of parasitic origin, to optimize the regulatory and methodological base, to develop a number of preventive measures aimed at stopping the spread of parasitic infections in the medical network.


Author(s):  
Pragya Nayak ◽  
Monica Kachroo

: A series of new heteroaryl thiazolidine-4-one derivatives were designed and subjected to in-silico prioritization using various virtual screening strategies. Two series of thiazolidinone derivatives were synthesized and screened for their in-vitro antitubercular, anticancer, antileishmanial and antibacterial (Staphylococcus aureus; Streptococcus pneumonia; Escherichia coli; Pseudomonas aeruginosa) activities. The compounds with electronegative substitutions exhibited positive antitubercular activity, the derivatives possessing a methyl substitution exhibited good inhibitory response against breast cancer cell line MCF-7 while the compounds possessing a hydrogen bond acceptor site like hydroxyl and methoxy substitution in their structures exhibited good in-vitro antileishmanial activity. Some compounds exhibited potent activity against gram positive bacteria Pseudomonas aeruginosa as compared to the standards. Altogether, the designed compounds exhibited good in-vitro anti-infective potential which was in good agreement with the in-silico predictions and they can be developed as important lead molecules for anti-infective and chemotherapeutic drug research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong He ◽  
Hang Zhao ◽  
Yuanwen Liu ◽  
He Zhou

AbstractThe worldwide emergence and spread of antimicrobial resistance is accelerated by irrational administration and use of empiric antibiotics. A key point to the crisis is a lack of rapid diagnostic protocols for antimicrobial susceptibility testing (AST), which is crucial for a timely and rational antibiotic prescription. Here, a recombinant bacteriophage tail fiber protein (TFP) was functionalized on magnetic particles to specifically capture Pseudomonas aeruginosa, while fluorescein isothiocyanate-labeled-magainin II was utilized as the indicator. For solving the magnetic particles’ blocking effects, a reverse assaying protocol based on TFP recognition was developed to investigate the feasibility of detection and AST of P. aeruginosa. P. aeruginosa can be rapidly, sensitively and specifically detected within 1.5 h with a linear range of 1.0 × 102 to 1.0 × 106 colony forming units (CFU)⋅mL−1 and a detection limit of 3.3 × 10 CFU⋅mL−1. Subsequently, AST results, which were consistent with broth dilution results, can be obtained within 3.5 h. Due to the high specificity of the TFP, AST can actually be conducted without the need for bacterial isolation and identification. Based on the proof-of-principle work, the detection and AST of other pathogens can be extended by expressing the TFPs of their bacteriophages.


Antibiotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Tomasz Bogiel ◽  
Małgorzata Prażyńska ◽  
Joanna Kwiecińska-Piróg ◽  
Agnieszka Mikucka ◽  
Eugenia Gospodarek-Komkowska

Pseudomonas aeruginosa is one of the most commonly isolated bacteria from clinical specimens, with increasing isolation frequency in nosocomial infections. Herein, we investigated whether antimicrobial-resistant P. aeruginosa strains, e.g., metallo-beta-lactamase (MBL)-producing isolates, may possess a reduced number of virulence genes, resulting from appropriate genome management to adapt to a changing hospital environment. Hospital conditions, such as selective pressure, may lead to the replacement of virulence genes by antimicrobial resistance genes that are crucial to survive under current conditions. The study aimed to compare, using PCR, the frequency of the chosen enzymatic virulence factor genes (alkaline protease-aprA, elastase B-lasB, neuraminidases-nan1 and nan2, and both variants of phospholipase C-plcH and plcN) to MBL distribution among 107 non-duplicated carbapenem-resistant P. aeruginosa isolates. The gene encoding alkaline protease was noted with the highest frequency (100%), while the neuraminidase-1 gene was observed in 37.4% of the examined strains. The difference in lasB and nan1 prevalence amongst the MBL-positive and MBL-negative strains, was statistically significant. Although P. aeruginosa virulence is generally more likely determined by the complex regulation of the virulence gene expression, herein, we found differences in the prevalence of various virulence genes in MBL-producers.


Pathogens ◽  
2014 ◽  
Vol 3 (2) ◽  
pp. 309-340 ◽  
Author(s):  
Céline Lucchetti-Miganeh ◽  
David Redelberger ◽  
Gaël Chambonnier ◽  
François Rechenmann ◽  
Sylvie Elsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document