scholarly journals Pseudomonas aeruginosa Genome Evolution in Patients and under the Hospital Environment

Pathogens ◽  
2014 ◽  
Vol 3 (2) ◽  
pp. 309-340 ◽  
Author(s):  
Céline Lucchetti-Miganeh ◽  
David Redelberger ◽  
Gaël Chambonnier ◽  
François Rechenmann ◽  
Sylvie Elsen ◽  
...  
Antibiotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Tomasz Bogiel ◽  
Małgorzata Prażyńska ◽  
Joanna Kwiecińska-Piróg ◽  
Agnieszka Mikucka ◽  
Eugenia Gospodarek-Komkowska

Pseudomonas aeruginosa is one of the most commonly isolated bacteria from clinical specimens, with increasing isolation frequency in nosocomial infections. Herein, we investigated whether antimicrobial-resistant P. aeruginosa strains, e.g., metallo-beta-lactamase (MBL)-producing isolates, may possess a reduced number of virulence genes, resulting from appropriate genome management to adapt to a changing hospital environment. Hospital conditions, such as selective pressure, may lead to the replacement of virulence genes by antimicrobial resistance genes that are crucial to survive under current conditions. The study aimed to compare, using PCR, the frequency of the chosen enzymatic virulence factor genes (alkaline protease-aprA, elastase B-lasB, neuraminidases-nan1 and nan2, and both variants of phospholipase C-plcH and plcN) to MBL distribution among 107 non-duplicated carbapenem-resistant P. aeruginosa isolates. The gene encoding alkaline protease was noted with the highest frequency (100%), while the neuraminidase-1 gene was observed in 37.4% of the examined strains. The difference in lasB and nan1 prevalence amongst the MBL-positive and MBL-negative strains, was statistically significant. Although P. aeruginosa virulence is generally more likely determined by the complex regulation of the virulence gene expression, herein, we found differences in the prevalence of various virulence genes in MBL-producers.


2017 ◽  
Vol 66 (4) ◽  
pp. 427-431 ◽  
Author(s):  
Tomasz Bogiel ◽  
Aleksander Deptuła ◽  
Joanna Kwiecińska-Piróg ◽  
Małgorzata Prażyńska ◽  
Agnieszka Mikucka ◽  
...  

Pseudomonas aeruginosa rods are one of the most commonly isolated microorganisms from clinical specimens, usually responsible for nosocomial infections. Antibiotic-resistant P. aeruginosa strains may present reduced expression of virulence factors. This fact may be caused by appropriate genome management to adapt to changing conditions of the hospital environment. Virulence factors genes may be replaced by those crucial to survive, like antimicrobial resistance genes. The aim of this study was to evaluate, using PCR, the occurrence of exoenzyme S-coding gene (exoS) in two distinct groups of P. aeruginosa strains: 83 multidrug-sensitive (MDS) and 65 multidrug-resistant (MDR) isolates. ExoS gene was noted in 72 (48.7%) of the examined strains: 44 (53.0%) MDS and 28 (43.1%) MDR. The observed differences were not statistically significant (p = 0.1505). P. aeruginosa strains virulence is rather determined by the expression regulation of the possessed genes than the difference in genes frequency amongst strains with different antimicrobial susceptibility patterns.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1617
Author(s):  
Raouaa Maaroufi ◽  
Olfa Dziri ◽  
Linda Hadjadj ◽  
Seydina M. Diene ◽  
Jean-Marc Rolain ◽  
...  

Hospital environments constitute the main reservoir of multidrug-resistant bacteria. In this study we aimed to investigate the presence of Gram-negative bacteria in one Northwestern Tunisian hospital environment, and characterize the genes involved in bacterial resistance. A total of 152 environmental isolates were collected from various surfaces and isolated using MacConkey medium supplemented with cefotaxime or imipenem, with 81 fermenter bacteria (27 Escherichia coli, and 54 Enterobacter spp., including 46 Enterobacter cloacae), and 71 non-fermenting bacteria (69 Pseudomonas spp., including 54 Pseudomonas aeruginosa, and 2 Stenotrophomonas maltophilia) being identified by the MALDI-TOF-MS method. Antibiotic susceptibility testing was performed by disk diffusion method and E-Test was used to determine MICs for imipenem. Several genes implicated in beta-lactams resistance were characterized by PCR and sequencing. Carbapenem resistance was detected among 12 isolates; nine E. coli (blaNDM-1 (n = 8); blaNDM-1 + blaVIM-2 (n = 1)) and three P. aeruginosa were carbapenem-resistant by loss of OprD porin. The whole-genome sequencing of P. aeruginosa 97H was determined using Illumina MiSeq sequencer, typed ST285, and harbored blaOXA-494. Other genes were also detected, notably blaTEM (n = 23), blaCTX-M-1 (n = 10) and blaCTX-M-9 (n = 6). These new epidemiological data imposed new surveillance strategies and strict hygiene rules to decrease the spread of multidrug-resistant bacteria in this area.


2020 ◽  
Author(s):  
Marie Petitjean ◽  
Paulo Juarez ◽  
Alexandre Meunier ◽  
Etienne Daguindau ◽  
Hélène Puja ◽  
...  

AbstractThe biological features that allow a pathogen to survive in the hospital environment are mostly unknown. The extinction of bacterial epidemics in hospitals is mostly attributed to changes in medical practice, including infection control, but the role of bacterial adaptation has never been documented. We analyzed a collection of Pseudomonas aeruginosa isolates belonging to the Besançon Epidemic Strain (BES), responsible for a 12-year nosocomial outbreak, using a genotype-to-phenotype approach. Bayesian analysis estimated the emergence of the clone in the hospital five years before its opening, during the creation of its water distribution network made of copper. BES survived better than the reference strains PAO1 and PA14 in a copper solution due to a genomic island containing 13 metal-resistance genes and was specifically able to proliferate in the ubiquitous amoeba Vermamoeba vermiformis. Mutations affecting amino-acid metabolism, antibiotic resistance, lipopolysaccharide biosynthesis, and regulation were enriched during the spread of BES. Seven distinct regulatory mutations attenuated the overexpression of the genes encoding the efflux pump MexAB-OprM over time. The fitness of BES decreased over time in correlation with its genome size. Overall, the resistance to inhibitors and predators presumably aided the proliferation and propagation of BES in the plumbing system of the hospital. The pathogen further spread among patients via multiple routes of contamination. The decreased prevalence of patients infected by BES mirrored the parallel and convergent genomic evolution and reduction that affected bacterial fitness. Along with infection control measures, this may have participated in the extinction of BES in the hospital setting.ImportanceBacterial pathogens are responsible for nosocomial outbreaks, but the sources of contamination of the hospitals are mostly unclear and the role of bacterial evolution in the extinction of outbreaks has never been considered. Here, we found that an epidemic strain of the pathogen Pseudomonas aeruginosa contaminated the drinking water network of a hospital due to its tolerance to copper and predatory amoeba, both present in the water pipes. The extinction of the outbreak occurred concomitantly with parallel and convergent genome evolution and a reduction in the size of the bacterial genome that correlated with the fitness of the pathogen. Our data suggest that pathogen evolution participated in the extinction of an outbreak in a hospital setting.


2021 ◽  
pp. 40-50
Author(s):  
Munzer Ullah ◽  
Hayat Ullah ◽  
Khaliq Noor ◽  
Maliha Sarfraz ◽  
Misbah Ullah Khan ◽  
...  

Pseudomonas aeruginosa is a leading cause of disease and death particularly in cystic fibrosis patients and also considered resistance to chemotherapeutic agents. Therefore, it is very difficult to remove the Pseudomonas aeruginosa from the hospital environment by using simple techniques. In the contemporary study, biofilm mediated mechanism of various antimicrobial responses were analyzed. For this purpose, different Pseudomonas aeruginosa clinical isolates were collected from Pakistan medical institute Islamabad (PIMS) hospital and were investigated for pellicle formation. Pseudomonas aeruginosa isolates were studied for different groups of antibiotics including imipenem, meropenem, ceftazidime, amikacin, tobramycin, gentamicin, piperacillin, cefoperazone, and cefotaxime. The goal was to check antimicrobial susceptibility of pseudomonas aeruginosa which shows resistant to tobramycin, imipenem, meropenem, amikacin, gentamicin, cefotaxime, piperacillin, ceftazidime, cefoperazone. Additionally, in this study, Pseudomonas aeruginosa strains were also investigated for pellicle formation. In conclusion, this research work wills highlights the useful mechanism of antibiotics resistance to Pseudomonas aeruginosa infections in clinical practice. Keywords: Antibiotics, Pseudomonas aeruginosa, antibiotics, Biofilm, Peliclle.


2021 ◽  
Vol 7 (9) ◽  
Author(s):  
Marie Petitjean ◽  
Paulo Juarez ◽  
Alexandre Meunier ◽  
Etienne Daguindau ◽  
Hélène Puja ◽  
...  

The biological features that allow a pathogen to survive in the hospital environment are mostly unknown. The extinction of bacterial epidemics in hospitals is mostly attributed to changes in medical practice, including infection control, but the role of bacterial adaptation has never been documented. We analysed a collection of Pseudomonas aeruginosa isolates belonging to the Besançon Epidemic Strain (BES), responsible for a 12year nosocomial outbreak, using a genotype-to-phenotype approach. Bayesian analysis estimated the emergence of the clone in the hospital 5 years before its opening, during the creation of its water distribution network made of copper. BES survived better than the reference strains PAO1 and PA14 in a copper solution due to a genomic island containing 13 metal-resistance genes and was specifically able to proliferate in the ubiquitous amoeba Vermamoeba vermiformis. Mutations affecting amino-acid metabolism, antibiotic resistance, lipopolysaccharide biosynthesis, and regulation were enriched during the spread of BES. Seven distinct regulatory mutations attenuated the overexpression of the genes encoding the efflux pump MexAB-OprM over time. The fitness of BES decreased over time in correlation with its genome size. Overall, the resistance to inhibitors and predators presumably aided the proliferation and propagation of BES in the plumbing system of the hospital. The pathogen further spread among patients via multiple routes of contamination. The decreased prevalence of patients infected by BES mirrored the parallel and convergent genomic evolution and reduction that affected bacterial fitness. Along with infection control measures, this may have participated in the extinction of BES in the hospital setting.


1986 ◽  
Vol 20 (7-8) ◽  
pp. 575-581 ◽  
Author(s):  
John C. Rotschafer ◽  
Lois R. Shikuma

Pseudomonas aeruginosa continues to be a leading cause of nosocomial bacteremia and other serious, often life-threatening infections. The incidence of P. aeruginosa infection appears to be increasing. The resilience of Pseudomonas in the hospital environment, its endogenous virulence factors, and its current level of resistance to antimicrobials make it a formidable


Sign in / Sign up

Export Citation Format

Share Document