Faculty Opinions recommendation of Marching at the front and dragging behind: differential alphaVbeta3-integrin turnover regulates focal adhesion behavior.

Author(s):  
Carol Otey
F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 68 ◽  
Author(s):  
Matthew E Berginski ◽  
Shawn M Gomez

The Focal Adhesion Analysis Server (FAAS) is a web-based implementation of a set of computer vision algorithms designed to quantify the behavior of focal adhesions in cells imaged in 2D cultures. The input consists of one or more images of a labeled focal adhesion protein. The outputs of the system include a range of static and dynamic measurements for the adhesions present in each image as well as how these properties change over time. The user is able to adjust several parameters important for proper focal adhesion identification. This system provides a straightforward tool for the global, unbiased assessment of focal adhesion behavior common in optical microscopy studies. The webserver is available at: http://faas.bme.unc.edu/.


2009 ◽  
Vol 122 (5) ◽  
pp. 656-666 ◽  
Author(s):  
E. Papusheva ◽  
F. M. de Queiroz ◽  
J. Dalous ◽  
Y. Han ◽  
A. Esposito ◽  
...  

2013 ◽  
Vol 55 ◽  
pp. 1-15 ◽  
Author(s):  
Laura E. Gallagher ◽  
Edmond Y.W. Chan

Autophagy is a conserved cellular degradative process important for cellular homoeostasis and survival. An early committal step during the initiation of autophagy requires the actions of a protein kinase called ATG1 (autophagy gene 1). In mammalian cells, ATG1 is represented by ULK1 (uncoordinated-51-like kinase 1), which relies on its essential regulatory cofactors mATG13, FIP200 (focal adhesion kinase family-interacting protein 200 kDa) and ATG101. Much evidence indicates that mTORC1 [mechanistic (also known as mammalian) target of rapamycin complex 1] signals downstream to the ULK1 complex to negatively regulate autophagy. In this chapter, we discuss our understanding on how the mTORC1–ULK1 signalling axis drives the initial steps of autophagy induction. We conclude with a summary of our growing appreciation of the additional cellular pathways that interconnect with the core mTORC1–ULK1 signalling module.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 111-OR
Author(s):  
GIORGIO BASILE ◽  
AMEDEO VETERE ◽  
KA-CHEUK LIU ◽  
JIANG HU ◽  
OLOV ANDERSSON ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document