Faculty Opinions recommendation of The nonreceptor tyrosine kinase ACK2, a specific target for Cdc42 and a negative regulator of cell growth and focal adhesion complexes.

Author(s):  
Martin A Schwartz
1997 ◽  
Vol 110 (4) ◽  
pp. 401-407 ◽  
Author(s):  
D. Ilic ◽  
C.H. Damsky ◽  
T. Yamamoto

Morphogenetic processes during development, including cell migration, depend on signals from both the extracellular matrix (ECM) and soluble signaling factors. Extensive evidence has shown that the nonreceptor tyrosine kinase, focal adhesion kinase (FAK), is activated in response to both kind of signal. The most definitive evidence that FAK is directly downstream of signals initiated by the ECM comes from comparing the phenotypes of mice deficient for FAK and the ECM molecule, fibronectin: in both cases embryos die at about E8.5 and display almost identical severe vascular and other mesodermal defects. It is now clear that there are additional FAK-like proteins, indicating the existence of a FAK family. Furthermore, FAK is not located at adhesive sites in all cells where it is expressed. This, plus extensive data indicating that FAK becomes activated in response to several soluble signaling factors, suggests that the FAK family may be at the crossroads of multiple signaling pathways that affect cell and developmental processes.


1998 ◽  
Vol 275 (2) ◽  
pp. G177-G182 ◽  
Author(s):  
Enrique Rozengurt

Gastrointestinal (GI) peptides (also referred to as neuropeptides or regulatory peptides), including the mammalian bombesin-like peptides gastrin and CCK, elicit the synthesis of classic second messengers (e.g., Ca2+, diacylglycerol, and cAMP) and the consequent stimulation of serine/threonine protein kinase cascades. An emerging theme in signal transduction is that these agonists also induce rapid and coordinate tyrosine phosphorylation of a set of focal adhesion proteins, including the nonreceptor tyrosine kinase p125fak and the adaptor proteins p130cas and paxillin. GI peptide-mediated induction of tyrosine phosphorylation of these focal adhesion proteins is critically dependent on the integrity of the actin cytoskeleton and on functional Rho. The purpose of this article is to review recent advances in unraveling this novel tyrosine kinase pathway(s), because it appears to play a fundamental role in the mediation of important biological effects induced by GI peptides, including cell migration and proliferation.


1995 ◽  
Vol 15 (3) ◽  
pp. 1431-1438 ◽  
Author(s):  
S Arkinstall ◽  
M Payton ◽  
K Maundrell

The fission yeast Schizosaccharomyces pombe has no detectable endogenous receptor tyrosine kinases or associated signalling apparatus, and we have used this cell system to reconstitute mammalian platelet-derived growth factor beta (PDGF beta) receptor-linked activation of phospholipase C gamma 2 (PLC gamma 2). The PDGF beta receptor migrates as a glycosylated protein of 165 kDa associated exclusively with membrane fractions. No tyrosine autophosphorylation was detected when PDGF beta was expressed alone. PLC gamma 2 appears as a 140-kDa protein distributed between particulate and soluble fractions which exhibits characteristic selectivity for phosphatidylinositol 4,5-bisphosphate and is sensitive to powerful activation by Ca2+. When coexpressed, both PDGF beta and PLC gamma 2 undergo tyrosine phosphorylation, and this is accompanied by a > 26-fold increase in [3H]inositol 4,5-biphosphate ([3H]IP2) and [3H]inositol 1,4,5-triphosphate [3H]IP3 production. Treatment with the tyrosine phosphatase inhibitor pervanadate further increased PLC gamma 2 tyrosine phosphorylation as well as [3H]IP2 and [3H]IP3 generation. Phosphorylated PLC gamma 2 was found predominantly in membrane fractions. To test a nonreceptor tyrosine kinase, we then expressed the human proto-oncogene c-src together with its negative regulator Csk. These were immunodetectable as bands at 60 kDa (c-Src) and 50 kDa (Csk) and distributed between membrane and cytosolic fractions. When yeast coexpressing c-Src, Csk, and PLC gamma 2 was incubated with pervanadate, PLC gamma 2 was tyrosine phosphorylated and [3H]IP2 and [3H]IP3 production increased 11.0- and 7.0-fold, respectively. Csk expressed alone with PLC gamma 2 was ineffective. Similar PLC gamma 2 activation was observed upon in vitro mixing with the extracts expressing either c-Src or the PDGF beta receptor. In summary, this is the first report of a reconstitution of mammalian tyrosine kinase-linked effector activation in yeast cells and also the first demonstration of direct PLC gamma 2 activation by the proto-oncogene c-src. These observations indicate that S. pombe provides a powerful cell system in which to study critical molecular interactions and activities underlying receptor and nonreceptor tyrosine kinase-dependent cell signaling.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jonghwa Kim ◽  
Wonseok Kang ◽  
So Hee Kang ◽  
Su Hyun Park ◽  
Ji Young Kim ◽  
...  

AbstractHepatic fibrogenesis is characterized by activation of hepatic stellate cells (HSCs) and accumulation of extracellular matrix (ECM). The impact of ECM on TGF-β-mediated fibrogenic signaling pathway in HSCs has remained obscure. We studied the role of non-receptor tyrosine kinase focal adhesion kinase (FAK) family members in TGF-β-signaling in HSCs. We used a CCl4-induced liver fibrosis mice model to evaluate the effect of FAK family kinase inhibitors on liver fibrosis. RT-PCR and Western blot were used to measure the expression of its target genes; α-SMA, collagen, Nox4, TGF-β1, Smad7, and CTGF. Pharmacological inhibitors, siRNA-mediated knock-down, and plasmid-based overexpression were adopted to modulate the function and the expression level of proteins. Association of PYK2 activation with liver fibrosis was confirmed in liver samples from CCl4-treated mice and patients with significant fibrosis or cirrhosis. TGF-β treatment up-regulated expression of α-SMA, type I collagen, NOX4, CTGF, TGF-β1, and Smad7 in LX-2 cells. Inhibition of FAK family members suppressed TGF-β-mediated fibrogenic signaling. SiRNA experiments demonstrated that TGF-β1 and Smad7 were upregulated via Smad-dependent pathway through FAK activation. In addition, CTGF induction was Smad-independent and PYK2-dependent. Furthermore, RhoA activation was essential for TGF-β-mediated CTGF induction, evidenced by using ROCK inhibitor and dominant negative RhoA expression. We identified that TGF-β1-induced activation of PYK2-Src-RhoA triad leads to YAP/TAZ activation for CTGF induction in liver fibrosis. These findings provide new insights into the role of focal adhesion molecules in liver fibrogenesis, and targeting PYK2 may be an attractive target for developing novel therapeutic strategies for the treatment of liver fibrosis.


1993 ◽  
Vol 13 (2) ◽  
pp. 785-791
Author(s):  
M D Schaller ◽  
C A Borgman ◽  
J T Parsons

Integrins play a central role in cellular adhesion and anchorage of the cytoskeleton and participate in the generation of intracellular signals, including tyrosine phosphorylation. We have recently isolated a cDNA encoding a unique, focal adhesion-associated protein tyrosine kinase (FAK) that is a component of an integrin-mediated signal transduction pathway. Here we report the isolation of cDNAs encoding the C-terminal, noncatalytic domain of the FAK kinase, termed FRNK (FAK-related nonkinase). Both the FAK- and FRNK-encoded polypeptides, pp125FAK and p41/p43FRNK, are expressed in normal chicken embryo cells. pp125FAK and p41/p43FRNK were localized to focal adhesions, suggesting that pp125FAK is directed to the focal adhesions by sequences within its C-terminal domain. We also show that the fibronectin-dependent increase in tyrosine phosphorylation of pp125FAK is accompanied by a concomitant posttranslational modification of p41FRNK.


Sign in / Sign up

Export Citation Format

Share Document