Faculty Opinions recommendation of CNS integrins switch growth factor signalling to promote target-dependent survival.

Author(s):  
Ed Manser
BMC Cancer ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Ji Eun Kim ◽  
Clare Stones ◽  
Wayne R Joseph ◽  
Euphemia Leung ◽  
Graeme J Finlay ◽  
...  

2005 ◽  
Vol 388 (1) ◽  
pp. 185-194 ◽  
Author(s):  
Mário GRÃOS ◽  
Alexandra D. ALMEIDA ◽  
Sukalyan CHATTERJEE

The regulation of survival and cell death is a key determinant of cell fate. Recent evidence shows that survival and death machineries are regulated along the cell cycle. In the present paper, we show that BimEL [a BH3 (Bcl-2 homology 3)-only member of the Bcl-2 family of proteins; Bim is Bcl-2-interacting mediator of cell death; EL is the extra-long form] is phosphorylated in mitosis. This post-translational modification is dependent on MEK (mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase) and growth factor signalling. Interestingly, FGF (fibroblast growth factor) signalling seems to play an essential role in this process, since, in the presence of serum, inhibition of FGF receptors abrogated phosphorylation of Bim in mitosis. Moreover, we have shown bFGF (basic FGF) to be sufficient to induce phosphorylation of Bim in serum-free conditions in any phase of the cell cycle, and also to significantly rescue cells from serum-deprivation-induced apoptosis. Our results show that, in mitosis, Bim is phosphorylated downstream of growth factor signalling in a MEK-dependent manner, with FGF signalling playing an important role. We suggest that phosphorylation of Bim is a decisive step for the survival of proliferating cells.


2018 ◽  
Author(s):  
Ulrike Künzel ◽  
Adam G. Grieve ◽  
Yao Meng ◽  
Sally A. Cowley ◽  
Matthew Freeman

AbstractMany intercellular signals are synthesised as transmembrane precursors that are released by proteolytic cleavage (‘shedding’) from the cell surface. ADAM17, a membrane-tethered metalloprotease, is the primary shedding enzyme responsible for the release of the inflammatory cytokine TNFα and several EGF receptor ligands. ADAM17 exists in complex with the rhomboid-like iRhom proteins, which act as cofactors that regulate ADAM17 substrate shedding. Here we report that the poorly characterised FERM domain-containing protein FRMD8 is a new component of iRhom2/ADAM17 sheddase complex. FRMD8 binds to the cytoplasmic N-terminus of iRhoms, and is necessary to stabilise the iRhoms and ADAM17 beyond the Golgi. In the absence of FRMD8, iRhom2 and ADAM17 are degraded via the endolysosomal pathway, resulting in the reduction of ADAM17-mediated shedding. We have confirmed the pathophysiological significance of FRMD8 in iPSC-derived human macrophages and mouse tissues, thus demonstrating its role in the regulated release of multiple cytokine and growth factor signals.


Sign in / Sign up

Export Citation Format

Share Document