Faculty Opinions recommendation of Quantitative membrane proteomics reveals new cellular targets of viral immune modulators.

Author(s):  
Ted Hansen
2006 ◽  
Vol 2 (10) ◽  
pp. e107 ◽  
Author(s):  
Eric Bartee ◽  
Ashley McCormack ◽  
Klaus Früh

2020 ◽  
Vol 04 (04) ◽  
pp. 369-372
Author(s):  
Paul B. Romesser ◽  
Christopher H. Crane

AbstractEvasion of immune recognition is a hallmark of cancer that facilitates tumorigenesis, maintenance, and progression. Systemic immune activation can incite tumor recognition and stimulate potent antitumor responses. While the concept of antitumor immunity is not new, there is renewed interest in tumor immunology given the clinical success of immune modulators in a wide range of cancer subtypes over the past decade. One particularly interesting, yet exceedingly rare phenomenon, is the abscopal response, characterized by a potent systemic antitumor response following localized tumor irradiation presumably attributed to reactivation of antitumor immunity.


Author(s):  
Oleg Melnikov ◽  
Diana Zabolotnaya ◽  
Alexander Bredun ◽  
Bogdan Bil ◽  
Oksana Rylska ◽  
...  

Introduction: In recently ears factors of innate immunity both cellular and humoral have been paid considerable attention as they are a protective barrier of a fast response and that is why they are largely concentrated at the intersection of the digestive tract and airways. The data concerning the activity level of factors of innate immunity in the upper airways affected by nonspecific inflammatory processes is insufficient and sparse and therefore the purpose of this research was to study the content of humoral factors of innate immunity in the oropharyngeal secretion (ORS) of patients with chronic infectious inflammatory diseases of the upper airways in remission. Materials and Methods: There was an examination of 16 patients with chronic rhinosinusitis (CRS) of bacterial genesis (15-40 years old), 12 patients with rhinopharyngitis of post-viral genesis (8-16 years old), 12 people with scleroma from 30 tо 52 years of age (atrophic form), 10 patients with chronic tonsillitis in remission (from 10 to 33 years of age) and 11 patients of a control group (practically healthy donors from 12 tо 40 years of age). The content of MIP-1b, defensin-1β, lactoferrin, lysozyme, α-interferon was studied in the nonstimulated OPS. Statistics were carried out using Mann-Whitney U-test. Results: The greatest number of deviations in the decrease in the content of the examined nonspecific protective factors was found in cases of scleroma, chronic tonsillitis and chronic rhinosinusitis (p<0,05). The lack of protective humoral factors of innate immunity can be evidence of local immunodeficiency even in remission, which is a pathophysiological component of the maintenance of chronic inflammation. Conclusion: The decrease int he quantitative composition of factors of innate immunity in the oropharyngeal secretion of patients with chronic infectious inflammatory diseases of the airways is an objective ground not only for a replacement therapy, but also for the use of immune response modifiers from photo-immune modulators to “genuine immune modulators” controlling the state of the factors of both innate immunity and immunoglobulins, primarily of secretory type, the level and functionality of various groups of immunocompetent and accessory cells.


Author(s):  
Rana A. Alaaeddine ◽  
Perihan A. Elzahhar ◽  
Ibrahim AlZaim ◽  
Wassim Abou-Kheir ◽  
Ahmed S.F. Belal ◽  
...  

: Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro-and anti-tumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarize the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.


2020 ◽  
Vol 13 (12) ◽  
pp. 451
Author(s):  
Elena Zamagni ◽  
Paola Tacchetti ◽  
Paola Deias ◽  
Francesca Patriarca

The recent introduction of monoclonal antibodies (MoAbs), with several cellular targets, such as CD-38 (daratumumab and isatuximab) and SLAM F7 (elotuzumab), differently combined with other classes of agents, has significantly extended the outcomes of patients with multiple myeloma (MM) in different phases of the disease. Initially used in advanced/refractory patients, different MoAbs combination have been introduced in the treatment of newly diagnosed transplant eligible patients (NDTEMM), showing a significant improvement in the depth of the response and in survival outcomes, without a significant price in terms of toxicity. In smoldering MM, MoAbs have been applied, either alone or in combination with other drugs, with the goal of delaying the progression to active MM and restoring the immune system. In this review, we will focus on the main results achieved so far and on the main on-going trials using MoAbs in SMM and NDTEMM.


2021 ◽  
Vol 9 (7) ◽  
pp. 1415
Author(s):  
Sonia Laneri ◽  
Mariarita Brancaccio ◽  
Cristina Mennitti ◽  
Margherita G. De Biasi ◽  
Maria Elena Pero ◽  
...  

Antimicrobial peptides (AMPs), α- and β-defensins, possess antiviral properties. These AMPs achieve viral inhibition through different mechanisms of action. For example, they can: (i) bind directly to virions; (ii) bind to and modulate host cell-surface receptors, disrupting intracellular signaling; (iii) function as chemokines to augment and alter adaptive immune responses. Given their antiviral properties and the fact that the development of an effective coronavirus disease 2019 (COVID-19) treatment is an urgent public health priority, they and their derivatives are being explored as potential therapies against COVID-19. These explorations using various strategies, range from their direct interaction with the virus to using them as vaccine adjuvants. However, AMPs do not work in isolation, specifically in their role as potent immune modulators, where they interact with toll-like receptors (TLRs) and chemokine receptors. Both of these receptors have been shown to play roles in COVID-19 pathogenesis. In addition, it is known that a healthy lifestyle accompanied by controlled physical activity can represent a natural weapon against COVID-19. In competitive athletes, an increase in serum defensins has been shown to function as self-protection from the attack of microorganisms, consequently a controlled physical activity could act as a support to any therapies in fighting COVID-19. Therefore, including information on all these players’ interactions would produce a complete picture of AMP-based therapies’ response.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 364
Author(s):  
Marcelo Ayllon ◽  
Gamid Abatchev ◽  
Andrew Bogard ◽  
Rosey Whiting ◽  
Sarah E. Hobdey ◽  
...  

The need for alternatives to antibiotics in the fight against infectious diseases has inspired scientists to focus on antivirulence factors instead of the microorganisms themselves. In this respect, prior work indicates that tiny, enclosed bilayer lipid membranes (liposomes) have the potential to compete with cellular targets for toxin binding, hence preventing their biological attack and aiding with their clearance. The effectiveness of liposomes as decoy targets depends on their availability in the host and how rapidly they are cleared from the circulation. Although liposome PEGylation may improve their circulation time, little is known about how such a modification influences their interactions with antivirulence factors. To fill this gap in knowledge, we investigated regular and long-circulating liposomes for their ability to prevent in vitro red blood cell hemolysis induced by two potent lytic toxins, lysenin and streptolysin O. Our explorations indicate that both regular and long-circulating liposomes are capable of similarly preventing lysis induced by streptolysin O. In contrast, PEGylation reduced the effectiveness against lysenin-induced hemolysis and altered binding dynamics. These results suggest that toxin removal by long-circulating liposomes is feasible, yet dependent on the particular virulence factor under scrutiny.


Sign in / Sign up

Export Citation Format

Share Document