Faculty Opinions recommendation of A CaMKIIβ signaling pathway at the centrosome regulates dendrite patterning in the brain.

Author(s):  
Karl-Peter Giese
Keyword(s):  
2016 ◽  
Vol 19 (4) ◽  
pp. 404-409 ◽  
Author(s):  
Wei-Wei Ma ◽  
Bing-Jie Ding ◽  
Li-Jing Wang ◽  
Yi Shao ◽  
Rong Xiao

Stroke ◽  
2021 ◽  
Author(s):  
Luiz Ricardo C. Vasconcellos ◽  
Letícia Martimiano ◽  
Danillo Pereira Dantas ◽  
Filipe Mota Fonseca ◽  
Hilton Mata-Santos ◽  
...  

Background and Purpose: Heme is a red blood cell component released in the brain parenchyma following intracerebral hemorrhage. However, the study of the pathophysiological mechanisms triggered by heme in the brain is hampered by the lack of well-established in vivo models of intracerebral heme injection. This study aims to optimize and characterize a protocol of intrastriatal heme injection in mice, with a focus on the induction of lipid peroxidation, neuroinflammation and, ultimately, sensorimotor deficits. We also evaluated the involvement of NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3), an inflammasome sensor, in the behavior deficits induced by heme in this model. Methods: Mice were injected with heme in the striatum for the evaluation of neuroinflammation and brain damage through histological and biochemical techniques. Immunoblot was used to evaluate the expression of proteins involved in heme/iron metabolism and antioxidant responses and the activation of the MAPK (mitogen-activated protein kinase) signaling pathway. For the assessment of neurological function, we followed-up heme-injected mice for 2 weeks using the rotarod, elevated body swing, and cylinder tests. Mice injected with the vehicle (sham), or autologous blood were used as controls. Results: Heme induced lipid peroxidation and inflammation in the brain. Moreover, heme increased the expression of HO-1 (heme oxygenase-1), ferritin, p62, and superoxide dismutase 2, and activated the MAPK signaling pathway promoting pro-IL (interleukin)-1β production and its cleavage to the active form. Heme-injected mice exhibited signs of brain damage and reactive astrogliosis around the injection site. Behavior deficits were observed after heme or autologous blood injection in comparison to sham-operated controls. In addition, behavior deficits and IL-1β production were reduced in Nlrp3 knockout mice in comparison to wild-type mice. Conclusions: Our results show that intracerebral heme injection induces neuroinflammation, and neurological deficits, in an NLRP3-dependent manner, suggesting that this is a feasible model to evaluate the role of heme in neurological disorders.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Matylda B. Mielcarska ◽  
Magdalena Bossowska-Nowicka ◽  
Karolina P. Gregorczyk-Zboroch ◽  
Zbigniew Wyżewski ◽  
Lidia Szulc-Dąbrowska ◽  
...  

Toll-like receptors (TLRs) sense the presence of pathogen-associated molecular patterns. Nevertheless, the mechanisms modulating TLR-triggered innate immune responses are not yet fully understood. Complex regulatory systems exist to appropriately direct immune responses against foreign or self-nucleic acids, and a critical role of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), endosomal sorting complex required for transportation-0 (ESCRT-0) subunit, has recently been implicated in the endolysosomal transportation of TLR7 and TLR9. We investigated the involvement of Syk, Hrs, and STAM in the regulation of the TLR3 signaling pathway in a murine astrocyte cell line C8-D1A following cell stimulation with a viral dsRNA mimetic. Our data uncover a relationship between TLR3 and ESCRT-0, point out Syk as dsRNA-activated kinase, and suggest the role for Syk in mediating TLR3 signaling in murine astrocytes. We show molecular events that occur shortly after dsRNA stimulation of astrocytes and result in Syk Tyr-342 phosphorylation. Further, TLR3 undergoes proteolytic processing; the resulting TLR3 N-terminal form interacts with Hrs. The knockdown of Syk and Hrs enhances TLR3-mediated antiviral response in the form of IFN-β, IL-6, and CXCL8 secretion. Understanding the role of Syk and Hrs in TLR3 immune responses is of high importance since activation and precise execution of the TLR3 signaling pathway in the brain seem to be particularly significant in mounting an effective antiviral defense. Infection of the brain with herpes simplex type 1 virus may increase the secretion of amyloid-β by neurons and astrocytes and be a causal factor in degenerative diseases such as Alzheimer’s disease. Errors in TLR3 signaling, especially related to the precise regulation of the receptor transportation and degradation, need careful observation as they may disclose foundations to identify novel or sustain known therapeutic targets.


2020 ◽  
Vol 21 (19) ◽  
pp. 7373
Author(s):  
Motomasa Tanioka ◽  
Wyun Kon Park ◽  
Joohyun Park ◽  
Jong Eun Lee ◽  
Bae Hwan Lee

Stroke is a life-threatening condition that leads to the death of many people around the world. Reperfusion injury after ischemic stroke is a recurrent problem associated with various surgical procedures that involve the removal of blockages in the brain arteries. Lipid emulsion was recently shown to attenuate ischemic reperfusion injury in the heart and to protect the brain from excitotoxicity. However, investigations on the protective mechanisms of lipid emulsion against ischemia in the brain are still lacking. This study aimed to determine the neuroprotective effects of lipid emulsion in an in vivo rat model of ischemic reperfusion injury through middle cerebral artery occlusion (MCAO). Under sodium pentobarbital anesthesia, rats were subjected to MCAO surgery and were administered with lipid emulsion through intra-arterial injection during reperfusion. The experimental animals were assessed for neurological deficit wherein the brains were extracted at 24 h after reperfusion for triphenyltetrazolium chloride staining, immunoblotting and qPCR. Neuroprotection was found to be dosage-dependent and the rats treated with 20% lipid emulsion had significantly decreased infarction volumes and lower Bederson scores. Phosphorylation of Akt and glycogen synthase kinase 3-β (GSK3-β) were increased in the 20% lipid-emulsion treated group. The Wnt-associated signals showed a marked increase with a concomitant decrease in signals of inflammatory markers in the group treated with 20% lipid emulsion. The protective effects of lipid emulsion and survival-related expression of genes such as Akt, GSK-3β, Wnt1 and β-catenin were reversed by the intra-peritoneal administration of XAV939 through the inhibition of the Wnt/β-catenin signaling pathway. These results suggest that lipid emulsion has neuroprotective effects against ischemic reperfusion injury in the brain through the modulation of the Wnt signaling pathway and may provide potential insights for the development of therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document