Faculty Opinions recommendation of Dispatched mediates Hedgehog basolateral release to form the long-range morphogenetic gradient in the Drosophila wing disk epithelium.

Author(s):  
Paola Bovolenta
2011 ◽  
Vol 108 (31) ◽  
pp. 12591-12598 ◽  
Author(s):  
A. Callejo ◽  
A. Bilioni ◽  
E. Mollica ◽  
N. Gorfinkiel ◽  
G. Andres ◽  
...  

2015 ◽  
Vol 26 (25) ◽  
pp. 4700-4717 ◽  
Author(s):  
Anup Parchure ◽  
Neha Vyas ◽  
Charles Ferguson ◽  
Robert G. Parton ◽  
Satyajit Mayor

Hedgehog (Hh) is a secreted morphogen involved in both short- and long-range signaling necessary for tissue patterning during development. It is unclear how this dually lipidated protein is transported over a long range in the aqueous milieu of interstitial spaces. We previously showed that the long-range signaling of Hh requires its oligomerization. Here we show that Hh is secreted in the form of exovesicles. These are derived by the endocytic delivery of cell surface Hh to multivesicular bodies (MVBs) via an endosomal sorting complex required for transport (ECSRT)–dependent process. Perturbations of ESCRT proteins have a selective effect on long-range Hh signaling in Drosophila wing imaginal discs. Of importance, oligomerization-defective Hh is inefficiently incorporated into exovesicles due to its poor endocytic delivery to MVBs. These results provide evidence that nanoscale organization of Hh regulates the secretion of Hh on ESCRT-derived exovesicles, which in turn act as a vehicle for long-range signaling.


2020 ◽  
Vol 12 (3) ◽  
pp. e1478 ◽  
Author(s):  
Jia Gou ◽  
Jay A. Stotsky ◽  
Hans G. Othmer

2020 ◽  
Author(s):  
Ilse Hurbain ◽  
Anne-Sophie Macé ◽  
Maryse Romao ◽  
Lucie Sengmanivong ◽  
Laurent Ruel ◽  
...  

ABSTRACTThe regulation and coordination of developmental processes involves the secretion of morphogens and membrane carriers, including extracellular vesicles, which facilitate their transport over long distance. The long-range activity of the Hedgehog morphogen is conveyed by extracellular vesicles. However, the site and the molecular basis of their biogenesis remains unknown. By combining fluorescence and electron microscopy combined with genetics and cell biology approaches, we investigated the origin and the cellular mechanisms underlying extracellular vesicle biogenesis, and their contribution to Drosophila wing disc development, exploiting Hedgehog as a long-range morphogen. We show that microvilli of Drosophila wing disc epithelium are the site of generation of small extracellular vesicles that transport Hedgehog across the tissue. This process requires the Prominin-like protein, whose activity, together with interacting cytoskeleton components and lipids, is critical for maintaining microvilli integrity and function in secretion. Our results provide the first evidence that microvilli-derived extracellular vesicles contribute to Hedgehog long-range signaling activity highlighting their physiological significance in tissue development in vivo.


Development ◽  
1997 ◽  
Vol 124 (22) ◽  
pp. 4697-4705 ◽  
Author(s):  
M. Strigini ◽  
S.M. Cohen

The secreted protein Hedgehog (Hh) transmits a signal from posterior to anterior cells that is essential for limb development in insects and vertebrates. In Drosophila, Hh has been thought to act primarily to induce localized expression of Decapentaplegic and Wingless which in turn relay patterning cues at long range. We report here that Hh plays an additional role in patterning the wing. By replacing endogenous Hh activity with that of a membrane-tethered form of Hh, we show that Hh acts directly to pattern the central region of the wing, in addition to its role as an inducer of Dpp. Comparing the biological activities of secreted and membrane-tethered Hh provides evidence that Hh forms a local concentration gradient and functions as a concentration-dependent morphogen in the fly wing.


Development ◽  
2001 ◽  
Vol 128 (20) ◽  
pp. 3913-3925 ◽  
Author(s):  
Robert P. Ray ◽  
Kristi A. Wharton

The Drosophila BMP5/6/7/8 homolog, glass bottom boat (gbb), has been shown to be involved in proliferation and vein patterning in the wing disk. To better understand the roles for gbb in wing development, as well as its relationship with the Drosophila BMP2/4 homolog decapentaplegic (dpp), we have used clonal analysis to define the functional foci of gbb during wing development. Our results show that gbb has both local and long-range functions in the disk that coincide both spatially and functionally with the established functions of dpp, suggesting that both BMPs contribute to the same processes during wing development. Indeed, comparison of the mutant phenotypes of dpp and gbb hypomorphs and null clones shows that both BMPs act locally along the longitudinal and cross veins to affect the process of vein promotion during pupal development, and long-range from a single focus along the A/P compartment boundary to affect the processes of disk proliferation and vein specification during larval development. Moreover, we show that duplications of dpp are able to rescue many of the phenotypes associated with gbb mutants and clones, indicating that the functions of gbb are at least partially redundant with those of dpp. While this relationship is similar to that described for dpp and the BMP screw (scw) in the embryo, we show that the mechanisms underlying both local and long-range functions of gbb and dpp in the wing are different. For the local foci, gbb function is confined to the regions of the veins that require the highest levels of dpp signaling, suggesting that gbb acts to augment dpp signaling in the same way as scw is proposed to do in the embryo. However, unlike scw-dependent signals in the embryo, these gbb signals are not transduced by the Type I receptor saxophone (sax), thus, the cooperativity between gbb and dpp is not achieved by signaling through distinct receptor complexes. For the long-range focus along the A/P compartment boundary, gbb function does not appear to affect the high point of the dpp gradient, but, rather, appears to be required for low points, which is the reciprocal of the relationship between dpp and scw in the embryo. Moreover, these functions of gbb also do not require the Type I receptor sax. Given these results, we conclude that the relationships between gbb and dpp in the wing disk represent novel paradigms for how multiple BMP ligands signal during development, and that signaling by multiple BMPs involves a variety of different inter-ligand relationships that depend on the developmental context in which they act.


Nature ◽  
1996 ◽  
Vol 382 (6586) ◽  
pp. 93-93
Author(s):  
Thomas Lecuit ◽  
William J. Brook ◽  
Medard Ng ◽  
Manuel Calleja ◽  
Henry Sun ◽  
...  
Keyword(s):  

2015 ◽  
Vol 26 (18) ◽  
pp. 3329-3342 ◽  
Author(s):  
Tirthadipa Pradhan-Sundd ◽  
Esther M. Verheyen

Endosomal trafficking of signaling proteins plays an essential role in cellular homeostasis. The seven-pass transmembrane protein Frizzled (Fz) is a critical component of Wnt signaling. Although Wnt signaling is proposed to be regulated by endosomal trafficking of Fz, the molecular events that enable this regulation are not completely understood. Here we show that the endosomal protein Myopic (Mop) regulates Fz trafficking in the Drosophila wing disk by inhibiting the ubiquitination and degradation of Hrs. Deletion of Mop or Hrs results in endosomal accumulation of Fz and therefore reduced Wnt signaling. The in situ proximity ligation assay revealed a strong association between Mop and Hrs in the Drosophila wing disk. Overexpression of Hrs rescues the trafficking defect caused by mop knockdown. Mop aids in the maintenance of Ubpy, which deubiquitinates (and thus stabilizes) Hrs. In the absence of the ubiquitin ligase Cbl, Mop is dispensable. These findings support a previously unknown role for Mop in endosomal trafficking of Fz in Wnt-receiving cells.


Sign in / Sign up

Export Citation Format

Share Document