Faculty Opinions recommendation of Interleukin-7, a new cytokine targeting the mouse hypothalamic arcuate nucleus: role in body weight and food intake regulation.

Author(s):  
Y Peng Loh ◽  
Joshua J Park
PLoS ONE ◽  
2010 ◽  
Vol 5 (4) ◽  
pp. e9953 ◽  
Author(s):  
Laurence Macia ◽  
Odile Viltart ◽  
Myriam Delacre ◽  
Christelle Sachot ◽  
Laurent Héliot ◽  
...  

2016 ◽  
Vol 230 (2) ◽  
pp. R51-R58 ◽  
Author(s):  
Jaroslav Kuneš ◽  
Veronika Pražienková ◽  
Andrea Popelová ◽  
Barbora Mikulášková ◽  
Jana Zemenová ◽  
...  

Obesity is an escalating epidemic, but an effective noninvasive therapy is still scarce. For obesity treatment, anorexigenic neuropeptides are promising tools, but their delivery from the periphery to the brain is complicated because peptides have a low stability and limited ability to cross the blood–brain barrier. In this review, we summarize results of several studies with our newly designed lipidized analogs of prolactin-releasing peptide (PrRP). PrRP is involved in feeding and energy balance regulation as demonstrated by obesity phenotypes of both PrRP- and PrRP-receptor-knockout mice. Lipidized PrRP analogs showed binding affinity and signaling in PrRP receptor-expressing cells similar to natural PrRP. Moreover, these analogs showed high binding affinity also to anorexigenic neuropeptide FF (NPFF)-2 receptor. Acute peripheral administration of myristoylated and palmitoylated PrRP analogs to mice and rats induced strong and long-lasting anorexigenic effects and neuronal activation in the brain areas involved in food intake regulation. Two-week-long subcutaneous administration of palmitoylated PrRP31 and myristoylated PrRP20 lowered food intake, body weight, improved metabolic parameters and attenuated lipogenesis in mice with diet-induced obesity. A strong anorexigenic, body weight-reducing and glucose tolerance-improving effect of palmitoylated-PrRP31 was shown also in diet-induced obese rats after its repeated 2-week-long peripheral administration. Thus, the strong anorexigenic and body weight-reducing effects of palmitoylated PrRP31 and myristoylated PrRP20 make these analogs attractive candidates for antiobesity treatment. Moreover, PrRP receptor might be a new target for obesity therapy.


2019 ◽  
Vol 26 (5) ◽  
pp. 558-566
Author(s):  
Xiao‐Qin Wan ◽  
Fan Zeng ◽  
Xu‐Feng Huang ◽  
He‐Qin Yang ◽  
Lan Wang ◽  
...  

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Rola Hammoud ◽  
Chih-Sheng Liao ◽  
Emanuela Pannia ◽  
Mandy Ho ◽  
Neil Yang ◽  
...  

Abstract Objectives High gestational folic acid (FA) induces an obesogenic phenotype in male Wistar rat offspring. Imbalances between FA and other methyl-nutrients (i.e., choline) leading to perturbations in the 1-carbon cycle may account for the effects of high FA diets. Canadian women consume high (2–7-fold) intakes of FA, but most are not meeting recommended adequate intakes for choline. Choline is also absent from Canadian prenatal supplements. The objective of this study is to evaluate the effects of the interaction between choline and FA in maternal diets of rats on the 1-carbon cycle, and the programming of food intake, body weight gain and biomarkers of obesity in the offspring later in life. Methods Pregnant Wistar rat dams were fed the AIN-93 G diet with recommended (1X) choline and FA (RCRF, control), or a 5X FA diet with either 0.5X choline (LCHF), 1X choline (RCHF), or 2.5X choline (HCHF). Brain and blood were collected at birth. At weaning one male pup/dam from all groups was maintained on the control diet for 20 weeks then terminated. Dependent measures include weekly body weight-gain and food intake, plasma glucoregulatory hormones and 1-carbon metabolites at birth and post-weaning. Results Increasing choline content to 2.5-fold in a high (5-fold) gestational FA diet (HCHF) led to lower plasma insulin and leptin levels at birth compared to the LCHF and RCHF diets, respectively (P < 0.05). It also led to lower (25%, P = 0.03) plasma 5-methyltetrahydrofolate concentrations at birth compared to the RCHF diet, suggesting more efficient utilization of FA. Offspring born to dams maintained on a high folic acid diet with either low or recommended choline had higher weekly food intake (6%, P < 0.05) and body weight-gain (9%, P < 0.01). In contrast, offspring from dams fed the HCHF gestational diet were not different from those born to dams fed the RCRF (control) diet, highlighting the mitigating effects of a balanced choline and FA gestational diet. Conclusions Increased intakes of choline mitigate the effects of high FA diets. Maternal dietary choline interacts with FA on the long-term programming of food intake regulation in the offspring; emphasizing a need for more attention to improving choline intakes by women of child-bearing age. Funding Sources This research was funded by the Canadian Institute of Health Research, Institute of Nutrition, Metabolism and Diabetes (CIHR-INMD).


2019 ◽  
Vol 53 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Nazli Khajehnasiri ◽  
Homayoun Khazali ◽  
Farzam Sheikhzadeh ◽  
Mahnaz Ghowsi

AbstractObjective. The hypothalamic arcuate nucleus proopiomelanocortin (POMC) and neuropeptide Y (NPY) circuitries are involved in the inhibition and stimulation of the appetite, respectively. The aim of this study was to investigate the effects of one-month lasting high-intensity exercise on the POMC mRNA and NPY mRNA expression in the above-mentioned brain structure and appetite and food intake levels.Methods. Fourteen male Wistar rats (250±50 g) were used and kept in the well-controlled conditions (22±2 °C, 50±5% humidity, and 12 h dark/light cycle) with food and water ad libitum. The rats were divided into two groups (n=7): 1) control group (C, these rats served as controls) and 2) exercised group (RIE, these rats performed a high-intensity exercise for one month (5 days per week) 40 min daily with speed 35 m/min. The total exercise time was 60 min. The body weight and food intake were recorded continuously during the experiments.Results. The results showed relative mRNA expression of POMC and NPY estimated in the hypothalamic arcuate nucleus. There were no significant differences in the NPY and POMC mRNAs expression levels and food intake between C and RIE groups.Conclusions. The present data indicate that one-month regular intensive exercise did not alter the levels of NPY and POMC mRNAs expression (as two important factors in the regulation of appetite) in the hypothalamic arcuate nucleus and food intake suggesting that this type of exercise itself is not an appropriate procedure for the body weight reduction.


2020 ◽  
Vol 36 ◽  
pp. 100972
Author(s):  
Chioma Izzi-Engbeaya ◽  
Yue Ma ◽  
Niki W. Buckley ◽  
Risheka Ratnasabapathy ◽  
Errol Richardson ◽  
...  

Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 2997-3001 ◽  
Author(s):  
Diana L. Williams

Glucagon-like peptide 1 (GLP-1) is both a gut-derived hormone and a neurotransmitter synthesized in the brain. Early reports suggested that GLP-1 acts in the periphery to promote insulin secretion and affect glucose homeostasis, whereas central GLP-1 reduces food intake and body weight. However, current research indicates that in fact, GLP-1 in each location plays a role in these functions. This review summarizes the evidence for involvement of peripheral and brain GLP-1 in food intake regulation and glucose homeostasis and proposes a model for the coordinated actions of GLP-1 at multiple sites.


Sign in / Sign up

Export Citation Format

Share Document