Faculty Opinions recommendation of Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus.

Author(s):  
Marvin Whiteley ◽  
Holly Huse
mBio ◽  
2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Jeffrey B. Kaplan ◽  
Era A. Izano ◽  
Prerna Gopal ◽  
Michael T. Karwacki ◽  
Sangho Kim ◽  
...  

ABSTRACTSubminimal inhibitory concentrations of antibiotics have been shown to induce bacterial biofilm formation. Few studies have investigated antibiotic-induced biofilm formation inStaphylococcus aureus, an important human pathogen. Our goal was to measureS. aureusbiofilm formation in the presence of low levels of β-lactam antibiotics. Fifteen phylogenetically diverse methicillin-resistantStaphylococcus aureus(MRSA) and methicillin-sensitiveS. aureus(MSSA) strains were employed. Methicillin, ampicillin, amoxicillin, and cloxacillin were added to cultures at concentrations ranging from 0× to 1× MIC. Biofilm formation was measured in 96-well microtiter plates using a crystal violet binding assay. Autoaggregation was measured using a visual test tube settling assay. Extracellular DNA was quantitated using agarose gel electrophoresis. All four antibiotics induced biofilm formation in some strains. The amount of biofilm induction was as high as 10-fold and was inversely proportional to the amount of biofilm produced by the strain in the absence of antibiotics. MRSA strains of lineages USA300, USA400, and USA500 exhibited the highest levels of methicillin-induced biofilm induction. Biofilm formation induced by low-level methicillin was inhibited by DNase. Low-level methicillin also induced DNase-sensitive autoaggregation and extracellular DNA release. The biofilm induction phenotype was absent in a strain deficient in autolysin (atl). Our findings demonstrate that subminimal inhibitory concentrations of β-lactam antibiotics significantly induce autolysin-dependent extracellular DNA release and biofilm formation in some strains ofS. aureus.IMPORTANCEThe widespread use of antibiotics as growth promoters in agriculture may expose bacteria to low levels of the drugs. The aim of this study was to investigate the effects of low levels of antibiotics on bacterial autoaggregation and biofilm formation, two processes that have been shown to foster genetic exchange and antibiotic resistance. We found that low levels of β-lactam antibiotics, a class commonly used in both clinical and agricultural settings, caused significant autoaggregation and biofilm formation by the important human pathogenStaphylococcus aureus. Both processes were dependent on cell lysis and release of DNA into the environment. The effect was most pronounced among multidrug-resistant strains known as methicillin-resistantS. aureus(MRSA). These results may shed light on the recalcitrance of some bacterial infections to antibiotic treatment in clinical settings and the evolution of antibiotic-resistant bacteria in agricultural settings.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Le Shi ◽  
Yang Wu ◽  
Chen Yang ◽  
Yue Ma ◽  
Qing-zhao Zhang ◽  
...  

AbstractStaphylococcus aureus is a common pathogen in chronic rhinosinusitis (CRS) patients, the pathogenesis of which involves the ability to form biofilms and produce various virulence factors. Tobacco smoke, another risk factor of CRS, facilitates S. aureus biofilm formation; however, the mechanisms involved are unclear. Here, we studied the effect of nicotine on S. aureus biofilm formation and the expression of virulence-related genes. S. aureus strains isolated from CRS patients and a USA300 strain were treated with nicotine or were untreated (control). Nicotine-treated S. aureus strains showed dose-dependent increases in biofilm formation, lower virulence, enhanced initial attachment, increased extracellular DNA release, and a higher autolysis rate, involving dysregulation of the accessory gene regulator (Agr) quorum-sensing system. Consequently, the expression of autolysis-related genes lytN and atlA, and the percentage of dead cells in biofilms was increased. However, the expression of virulence-related genes, including hla, hlb, pvl, nuc, ssp, spa, sigB, coa, and crtN was downregulated and there was reduced bacterial invasion of A549 human alveolar epithelial cells. The results of this study indicate that nicotine treatment enhances S. aureus biofilm formation by promoting initial attachment and extracellular DNA release but inhibits the virulence of this bacterium.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Benjamin B. A. Raymond ◽  
Cheryl Jenkins ◽  
Lynne Turnbull ◽  
Cynthia B. Whitchurch ◽  
Steven P. Djordjevic

2021 ◽  
Vol 9 (11) ◽  
pp. 2308
Author(s):  
Yusuke Iwabuchi ◽  
Tomoyo Nakamura ◽  
Yasuka Kusumoto ◽  
Ryoma Nakao ◽  
Tsutomu Iwamoto ◽  
...  

Streptococcus mutans releases membrane vesicles (MVs) and induces MV-dependent biofilm formation. Glucosyltransferases (Gtfs) are bound to MVs and contribute to the adhesion and glucans-dependent biofilm formation of early adherent bacteria on the tooth surface. The biofilm formation of S. mutans may be controlled depending on whether the initial pH tends to be acidic or alkaline. In this study, the characteristics and effects of MVs extracted from various conditions {(initial pH 6.0 and 8.0 media prepared with lactic acid (LA) and acetic acid (AA), and with NaOH (NO), respectively)} on the biofilm formation of S. mutans and early adherent bacteria were investigated. The quantitative changes in glucans between primary pH 6.0 and 8.0 conditions were observed, associated with different activities affecting MV-dependent biofilm formation. The decreased amount of Gtfs on MVs under the initial pH 6.0 conditions strongly guided low levels of MV-dependent biofilm formation. However, in the initial pH 6.0 and 8.0 solutions prepared with AA and NO, the MVs in the biofilm appeared to be formed by the expression of glucans and/or extracellular DNA. These results suggest that the environmental pH conditions established by acid and alkaline factors determine the differences in the local pathogenic activities of biofilm development in the oral cavity.


2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Ye Jin ◽  
Yinjuan Guo ◽  
Qing Zhan ◽  
Yongpeng Shang ◽  
Di Qu ◽  
...  

ABSTRACT Previous studies have shown that the administration of antibiotics at subinhibitory concentrations stimulates biofilm formation by the majority of multidrug-resistant Staphylococcus aureus (MRSA) strains. Here, we investigated the effect of subinhibitory concentrations of mupirocin on biofilm formation by the community-associated (CA) mupirocin-sensitive MRSA strain USA300 and the highly mupirocin-resistant clinical S. aureus SA01 to SA05 isolates. We found that mupirocin increased the ability of MRSA cells to attach to surfaces and form biofilms. Confocal laser scanning microscopy (CLSM) demonstrated that mupirocin treatment promoted thicker biofilm formation, which also correlated with the production of extracellular DNA (eDNA). Furthermore, quantitative real-time PCR (RT-qPCR) results revealed that this effect was largely due to the involvement of holin-like and antiholin-like proteins (encoded by the cidA gene), which are responsible for modulating cell death and lysis during biofilm development. We found that cidA expression levels significantly increased by 6.05- to 35.52-fold (P < 0.01) after mupirocin administration. We generated a cidA-deficient mutant of the USA300 S. aureus strain. Exposure of the ΔcidA mutant to mupirocin did not result in thicker biofilm formation than that in the parent strain. We therefore hypothesize that the mupirocin-induced stimulation of S. aureus biofilm formation may involve the upregulation of cidA.


2015 ◽  
Vol 197 (24) ◽  
pp. 3779-3787 ◽  
Author(s):  
Vanina Dengler ◽  
Lucy Foulston ◽  
Alicia S. DeFrancesco ◽  
Richard Losick

ABSTRACTStaphylococcus aureusis an important human pathogen that can form biofilms on various surfaces. These cell communities are protected from the environment by a self-produced extracellular matrix composed of proteins, DNA, and polysaccharide. The exact compositions and roles of the different components are not fully understood. In this study, we investigated the role of extracellular DNA (eDNA) and its interaction with the recently identified cytoplasmic proteins that have a moonlighting role in the biofilm matrix. These matrix proteins associate with the cell surface upon the drop in pH that naturally occurs during biofilm formation, and we found here that this association is independent of eDNA. Conversely, the association of eDNA with the matrix was dependent on matrix proteins. Both proteinase and DNase treatments severely reduced clumping of resuspended biofilms; highlighting the importance of both proteins and eDNA in connecting cells together. By adding an excess of exogenous DNA to DNase-treated biofilm, clumping was partially restored, confirming the crucial role of eDNA in the interconnection of cells. On the basis of our results, we propose that eDNA acts as an electrostatic net, interconnecting cells surrounded by positively charged matrix proteins at a low pH.IMPORTANCEExtracellular DNA (eDNA) is an important component of the biofilm matrix of diverse bacteria, but its role in biofilm formation is not well understood. Here we report that inStaphylococcus aureus, eDNA associates with cells in a manner that depends on matrix proteins and that eDNA is required to link cells together in the biofilm. These results confirm previous studies that showed that eDNA is an important component of theS. aureusbiofilm matrix and also suggest that eDNA acts as an electrostatic net that tethers cells together via the proteinaceous layer of the biofilm matrix.


Sign in / Sign up

Export Citation Format

Share Document