scholarly journals Effect of nicotine on Staphylococcus aureus biofilm formation and virulence factors

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Le Shi ◽  
Yang Wu ◽  
Chen Yang ◽  
Yue Ma ◽  
Qing-zhao Zhang ◽  
...  

AbstractStaphylococcus aureus is a common pathogen in chronic rhinosinusitis (CRS) patients, the pathogenesis of which involves the ability to form biofilms and produce various virulence factors. Tobacco smoke, another risk factor of CRS, facilitates S. aureus biofilm formation; however, the mechanisms involved are unclear. Here, we studied the effect of nicotine on S. aureus biofilm formation and the expression of virulence-related genes. S. aureus strains isolated from CRS patients and a USA300 strain were treated with nicotine or were untreated (control). Nicotine-treated S. aureus strains showed dose-dependent increases in biofilm formation, lower virulence, enhanced initial attachment, increased extracellular DNA release, and a higher autolysis rate, involving dysregulation of the accessory gene regulator (Agr) quorum-sensing system. Consequently, the expression of autolysis-related genes lytN and atlA, and the percentage of dead cells in biofilms was increased. However, the expression of virulence-related genes, including hla, hlb, pvl, nuc, ssp, spa, sigB, coa, and crtN was downregulated and there was reduced bacterial invasion of A549 human alveolar epithelial cells. The results of this study indicate that nicotine treatment enhances S. aureus biofilm formation by promoting initial attachment and extracellular DNA release but inhibits the virulence of this bacterium.

mBio ◽  
2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Jeffrey B. Kaplan ◽  
Era A. Izano ◽  
Prerna Gopal ◽  
Michael T. Karwacki ◽  
Sangho Kim ◽  
...  

ABSTRACTSubminimal inhibitory concentrations of antibiotics have been shown to induce bacterial biofilm formation. Few studies have investigated antibiotic-induced biofilm formation inStaphylococcus aureus, an important human pathogen. Our goal was to measureS. aureusbiofilm formation in the presence of low levels of β-lactam antibiotics. Fifteen phylogenetically diverse methicillin-resistantStaphylococcus aureus(MRSA) and methicillin-sensitiveS. aureus(MSSA) strains were employed. Methicillin, ampicillin, amoxicillin, and cloxacillin were added to cultures at concentrations ranging from 0× to 1× MIC. Biofilm formation was measured in 96-well microtiter plates using a crystal violet binding assay. Autoaggregation was measured using a visual test tube settling assay. Extracellular DNA was quantitated using agarose gel electrophoresis. All four antibiotics induced biofilm formation in some strains. The amount of biofilm induction was as high as 10-fold and was inversely proportional to the amount of biofilm produced by the strain in the absence of antibiotics. MRSA strains of lineages USA300, USA400, and USA500 exhibited the highest levels of methicillin-induced biofilm induction. Biofilm formation induced by low-level methicillin was inhibited by DNase. Low-level methicillin also induced DNase-sensitive autoaggregation and extracellular DNA release. The biofilm induction phenotype was absent in a strain deficient in autolysin (atl). Our findings demonstrate that subminimal inhibitory concentrations of β-lactam antibiotics significantly induce autolysin-dependent extracellular DNA release and biofilm formation in some strains ofS. aureus.IMPORTANCEThe widespread use of antibiotics as growth promoters in agriculture may expose bacteria to low levels of the drugs. The aim of this study was to investigate the effects of low levels of antibiotics on bacterial autoaggregation and biofilm formation, two processes that have been shown to foster genetic exchange and antibiotic resistance. We found that low levels of β-lactam antibiotics, a class commonly used in both clinical and agricultural settings, caused significant autoaggregation and biofilm formation by the important human pathogenStaphylococcus aureus. Both processes were dependent on cell lysis and release of DNA into the environment. The effect was most pronounced among multidrug-resistant strains known as methicillin-resistantS. aureus(MRSA). These results may shed light on the recalcitrance of some bacterial infections to antibiotic treatment in clinical settings and the evolution of antibiotic-resistant bacteria in agricultural settings.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Safoura Derakhshan ◽  
Masoumeh Navidinia ◽  
Fakhri Haghi

Abstract Background and objective Carriage of virulence factors confers some evolutionary benefit to bacteria, which favors the resistant strains. We aimed to analyze whether antibiotic susceptibility of Staphylococcus aureus strains is affected by agr typing, biofilm formation ability, and virulence profiles. Methods A total of 123 S. aureus clinical isolates were subjected to antimicrobial susceptibility testing by disk diffusion method, biofilm formation by microtiter plate method, as well as polymerase chain reaction screening to identify virulence genes and the accessory gene regulator (agr) types I-IV. A P value < 0.05 was considered significant. Results The most prevalent virulence gene was staphyloxanthin crtN, followed by hemolysin genes, capsular cap8H, toxic shock toxin tst, and enterotoxin sea, respectively. Resistant isolates were more commonly found in the agr-negative group than in the agr-positive group. Isolates of agr type III were more virulent than agr I isolates. Strong biofilm producers showed more antibiotic susceptibility and carried more virulence genes than non-strong biofilm producers. Associations were found between the presence of virulence genes and susceptibility to antibiotics. Carriage of the virulence genes and agr was higher in the inpatients; while, resistance and strong biofilms were more prevalent in the outpatients. Conclusion These findings indicated the presence of several virulence factors, biofilm production capacity, agr types and resistance to antibiotics in clinical S. aureus isolates. Considering the importance of S. aureus for human medicine, an understanding of virulence and resistance relationships would help to reduce the impact of S. aureus infections.


2020 ◽  
Author(s):  
Adnan K. Syed ◽  
Christopher R. Vickery ◽  
Taliesin Lenhart ◽  
Eliza Llewellyn ◽  
Suzanne Walker ◽  
...  

AbstractThe bacterial pathogen Staphylococcus aureus forms multicellular communities known as biofilms in which cells are held together by an extracellular matrix. The matrix consists of repurposed cytoplasmic proteins and extracellular DNA. These communities assemble during growth on medium containing glucose, but the intracellular signal for biofilm formation was unknown. Here we present evidence that biofilm formation is triggered by a drop in the levels of the second messenger cyclic-di-AMP. Previous work identified genes needed for the release of extracellular DNA, including genes for the cyclic-di-AMP phosphodiesterase GdpP, the transcriptional regulator XdrA, and the purine salvage enzyme Apt. Using a cyclic-di-AMP riboswitch biosensor and mass spectrometry, we show that the levels of the second messenger drop during biofilm formation in a glucose-dependent manner and that the drop is prevented in mutants of all three genes. Importantly, we also show that expression of the “accessory gene regulator” operon agr is under the positive control of cyclic-di-AMP and that an agr mutation, which is known to promote biofilm formation, bypasses the block in biofilm formation and eDNA release caused by a gdpP mutation. We conclude that the effect of the glucose-dependent drop in c-di-AMP levels is principally mediated by a reduction in agr expression, which in turn promotes biofilm formation.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Benjamin B. A. Raymond ◽  
Cheryl Jenkins ◽  
Lynne Turnbull ◽  
Cynthia B. Whitchurch ◽  
Steven P. Djordjevic

mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Vishal Gor ◽  
Aya J. Takemura ◽  
Masami Nishitani ◽  
Masato Higashide ◽  
Veronica Medrano Romero ◽  
...  

ABSTRACT Staphylococcus aureus is an important human pathogen whose success is largely attributed to its vast arsenal of virulence factors that facilitate its invasion into, and survival within, the human host. The expression of these virulence factors is controlled by the quorum sensing accessory gene regulator (Agr) system. However, a large proportion of clinical S. aureus isolates are consistently found to have a mutationally inactivated Agr system. These mutants have a survival advantage in the host but are considered irreversible mutants. Here we show, for the first time, that a fraction of Agr-negative mutants can revert their Agr activity. By serially passaging Agr-negative strains and screening for phenotypic reversion of hemolysis and subsequent sequencing, we identified two mutational events responsible for reversion: a genetic duplication plus inversion event and a poly(A) tract alteration. Additionally, we demonstrate that one clinical Agr-negative methicillin-resistant S. aureus (MRSA) isolate could reproducibly generate Agr-revertant colonies with a poly(A) tract genetic mechanism. We also show that these revertants activate their Agr system upon phagocytosis. We propose a model in which a minor fraction of Agr-negative S. aureus strains are phase variants that can revert their Agr activity and may act as a cryptic insurance strategy against host-mediated stress. IMPORTANCE Staphylococcus aureus is responsible for a broad range of infections. This pathogen has a vast arsenal of virulence factors at its disposal, but avirulent strains are frequently isolated as the cause of clinical infections. These isolates have a mutated agr locus and have been believed to have no evolutionary future. Here we show that a fraction of Agr-negative strains can repair their mutated agr locus with mechanisms resembling phase variation. The agr revertants sustain an Agr OFF state as long as they exist as a minority but can activate their Agr system upon phagocytosis. These revertant cells might function as a cryptic insurance strategy to survive immune-mediated host stress that arises during infection.


Sign in / Sign up

Export Citation Format

Share Document