scholarly journals Faculty Opinions recommendation of Urogenital development in Pallister-Hall syndrome is disrupted in a cell-lineage-specific manner by constitutive expression of GLI3 repressor.

Author(s):  
Andreas Schedl
2017 ◽  
Vol 114 (7) ◽  
pp. 1672-1677 ◽  
Author(s):  
Coyne G. Drummond ◽  
Alexa M. Bolock ◽  
Congrong Ma ◽  
Cliff J. Luke ◽  
Misty Good ◽  
...  

Enteroviruses are among the most common viral infectious agents of humans and are primarily transmitted by the fecal–oral route. However, the events associated with enterovirus infections of the human gastrointestinal tract remain largely unknown. Here, we used stem cell-derived enteroids from human small intestines to study enterovirus infections of the intestinal epithelium. We found that enteroids were susceptible to infection by diverse enteroviruses, including echovirus 11 (E11), coxsackievirus B (CVB), and enterovirus 71 (EV71), and that contrary to an immortalized intestinal cell line, enteroids induced antiviral and inflammatory signaling pathways in response to infection in a virus-specific manner. Furthermore, using the Notch inhibitor dibenzazepine (DBZ) to drive cellular differentiation into secretory cell lineages, we show that although goblet cells resist E11 infection, enteroendocrine cells are permissive, suggesting that enteroviruses infect specific cell populations in the human intestine. Taken together, our studies provide insights into enterovirus infections of the human intestine, which could lead to the identification of novel therapeutic targets and/or strategies to prevent or treat infections by these highly clinically relevant viruses.


1998 ◽  
Vol 353 (1370) ◽  
pp. 925-933 ◽  
Author(s):  
Nicholas A. Wright

The main pathways of epithelial differentiation in the intestine, Paneth, mucous, endocrine and columnar cell lineages are well recognized. However, in abnormal circumstances, for example in mucosal ulceration, a cell lineage with features distinct from these emerges, which has often been dismissed in the past as ‘pyloric’ metaplasia, because of its morphological resemblance to the pyloric mucosa in the stomach. However, we can conclude that this cell lineage has a defined phenotype unique in gastrointestinal epithelia, has a histogenesis that resembles that of Brunner's glands, but acquires a proliferative organization similar to that of the gastric gland. It expresses several peptides of particular interest, including epidermal growth factor, the trefoil peptides TFF1, TFF2, TFF3, lysozyme and PSTI. The presence of this lineage also appears to cause altered gene expression in adjacent indigenous cell lineages. We propose that this cell lineage is induced in gastrointestinal stem cells as a result of chronic mucosal ulceration, and plays an important part in ulcer healing; it should therefore be added to the repertoire of gastrointestinal stem cells.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 146
Author(s):  
Takahiro Nakayama ◽  
Toshiyuki Fukutomi ◽  
Yasuo Terao ◽  
Kimio Akagawa

The HPC-1/syntaxin 1A (Stx1a) gene, which is involved in synaptic transmission and neurodevelopmental disorders, is a TATA-less gene with several transcription start sites. It is activated by the binding of Sp1 and acetylated histone H3 to the −204 to +2 core promoter region (CPR) in neuronal cell/tissue. Furthermore, it is depressed by the association of class 1 histone deacetylases (HDACs) to Stx1a–CPR in non-neuronal cell/tissue. To further clarify the factors characterizing Stx1a gene silencing in non-neuronal cell/tissue not expressing Stx1a, we attempted to identify the promoter region forming DNA–protein complex only in non-neuronal cells. Electrophoresis mobility shift assays (EMSA) demonstrated that the −183 to −137 OL2 promoter region forms DNA–protein complex only in non-neuronal fetal rat skin keratinocyte (FRSK) cells which do not express Stx1a. Furthermore, the Yin-Yang 1 (YY1) transcription factor binds to the −183 to −137 promoter region of Stx1a in FRSK cells, as shown by competitive EMSA and supershift assay. Chromatin immunoprecipitation assay revealed that YY1 in vivo associates to Stx1a–CPR in cell/tissue not expressing Stx1a and that trichostatin A treatment in FRSK cells decreases the high-level association of YY1 to Stx1a-CPR in default. Reporter assay indicated that YY1 negatively regulates Stx1a transcription. Finally, mass spectrometry analysis showed that gene silencing factors, including HDAC1, associate onto the −183 to −137 promoter region together with YY1. The current study is the first to report that Stx1a transcription is negatively regulated in a cell/tissue-specific manner by YY1 transcription factor, which binds to the −183 to −137 promoter region together with gene silencing factors, including HDAC.


Blood ◽  
2012 ◽  
Vol 119 (19) ◽  
pp. 4349-4357 ◽  
Author(s):  
Fanny Guimont-Desrochers ◽  
Geneviève Boucher ◽  
Zhongjun Dong ◽  
Martine Dupuis ◽  
André Veillette ◽  
...  

Abstract The cell lineage origin of IFN-producing killer dendritic cells (IKDCs), which exhibit prominent antitumoral activity, has been subject to debate. Although IKDCs were first described as a cell type exhibiting both plasmacytoid DC and natural killer (NK) cell properties, the current view reflects that IKDCs merely represent activated NK cells expressing B220, which were thus renamed B220+ NK cells. Herein, we further investigate the lineage relation of B220+ NK cells with regard to other NK-cell subsets. We surprisingly find that, after adoptive transfer, B220− NK cells did not acquire B220 expression, even in the presence of potent activating stimuli. These findings strongly argue against the concept that B220+ NK cells are activated NK cells. Moreover, we unequivocally show that B220+ NK cells are highly proliferative and differentiate into mature NK cells after in vivo adoptive transfer. Additional phenotypic, functional, and transcriptional characterizations further define B220+ NK cells as immediate precursors to mature NK cells. The characterization of these novel attributes to B220+ NK cells will guide the identification of their ortholog in humans, contributing to the design of potent cancer immunotherapies.


2000 ◽  
Vol 191 (8) ◽  
pp. 1281-1292 ◽  
Author(s):  
Raelene J. Grumont ◽  
Steve Gerondakis

In lymphocytes, the Rel transcription factor is essential in establishing a pattern of gene expression that promotes cell proliferation, survival, and differentiation. Here we show that mitogen-induced expression of interferon (IFN) regulatory factor 4 (IRF-4), a lymphoid-specific member of the IFN family of transcription factors, is Rel dependent. Consistent with IRF-4 functioning as a repressor of IFN-induced gene expression, the absence of IRF-4 expression in c-rel−/− B cells coincided with a greater sensitivity of these cells to the antiproliferative activity of IFNs. In turn, enforced expression of an IRF-4 transgene restored IFN modulated c-rel−/− B cell proliferation to that of wild-type cells. This cross-regulation between two different signaling pathways represents a novel mechanism that Rel/nuclear factor κB can repress the transcription of IFN-regulated genes in a cell type–specific manner.


1997 ◽  
Vol 50 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Q L Lu ◽  
M Laniado ◽  
P D Abel ◽  
G W Stamp ◽  
E N Lalani

2020 ◽  
Author(s):  
Manuela Wuelling ◽  
Christoph Neu ◽  
Andrea M. Thiesen ◽  
Simo Kitanovski ◽  
Yingying Cao ◽  
...  

AbstractEpigenetic modifications play critical roles in regulating cell lineage differentiation, but the epigenetic mechanisms guiding specific differentiation steps within a cell lineage have rarely been investigated. To decipher such mechanisms, we used the defined transition from proliferating (PC) into hypertrophic chondrocytes (HC) during endochondral ossification as a model. We established a map of activating and repressive histone modifications for each cell type. ChromHMM state transition analysis and Pareto-based integration of differential levels of mRNA and epigenetic marks revealed that differentiation associated gene repression is initiated by the addition of H3K27me3 to promoters still carrying substantial levels of activating marks. Moreover, the integrative analysis identified genes specifically expressed in cells undergoing the transition into hypertrophy.Investigation of enhancer profiles detected surprising differences in enhancer number, location, and transcription factor binding sites between the two closely related cell types. Furthermore, cell type-specific upregulation of gene expression was associated with a shift from low to high H3K27ac decoration. Pathway analysis identified PC-specific enhancers associated with chondrogenic genes, while HC-specific enhancers mainly control metabolic pathways linking epigenetic signature to biological functions.


Development ◽  
1987 ◽  
Vol 100 (1) ◽  
pp. 1-12 ◽  
Author(s):  
G.M. Technau

The mechanisms leading to the commitment of a cell to a particular fate or to restrictions in its developmental potencies represent a problem of central importance in developmental biology. Both at the genetic and at the molecular level, studies addressing this topic using the fruitfly Drosophila melanogaster have advanced substantially, whereas, at the cellular level, experimental techniques have been most successfully applied to organisms composed of relatively large and accessible cells. The combined application of the different approaches to one system should improve our understanding of the process of commitment as a whole. Recently, a method has been devised to study cell lineage in Drosophila embryos at the single cell level. This method has been used to analyse the lineages, as well as the state of commitment of single cell progenitors from various ectodermal, mesodermal and endodermal anlagen and of the pole cells. The results obtained from a clonal analysis of wild-type larval structures are discussed in this review.


Sign in / Sign up

Export Citation Format

Share Document