Faculty Opinions recommendation of Soxc transcription factors promote contralateral retinal ganglion cell differentiation and axon guidance in the mouse visual system.

Author(s):  
Alain Chédotal ◽  
Robin Vigouroux
Neuron ◽  
2017 ◽  
Vol 93 (5) ◽  
pp. 1110-1125.e5 ◽  
Author(s):  
Takaaki Kuwajima ◽  
Célia A. Soares ◽  
Austen A. Sitko ◽  
Véronique Lefebvre ◽  
Carol Mason

2007 ◽  
Vol 30 (4) ◽  
pp. 77
Author(s):  
Y. Y. Chen ◽  
C. L. Hehr ◽  
K. Atkinson-Leadbeater ◽  
J. C. Hocking ◽  
S. McFarlane

Background: The growth cone interprets cues in its environment in order to reach its target. We want to identify molecules that regulate growth cone behaviour in the developing embryo. We investigated the role of A disintegrin and metalloproteinase 10 (ADAM10) in axon guidance in the developing visual system of African frog, Xenopus laevis. Methods: We first examined the expression patterns of adam10 mRNA by in situ hybridization. We then exposed the developing optic tract to an ADAM10 inhibitor, GI254023X, in vivo. Lastly, we inhibited ADAM10 function in diencephalic neuroepithelial cells (through which retinal ganglion cell (RGC) axons extend) or RGCs by electroporating or transfecting an ADAM10 dominant negative (dn-adam10). Results: We show that adam10 mRNA is expressed in the dorsal neuroepithelium over the time RGC axons extend towards their target, the optic tectum. Second, pharmacological inhibition of ADAM10 in an in vivo exposed brain preparation causes the failure of RGC axons to recognize their target at low concentrations (0.5, 1 μM), and the failure of the axons to make a caudal turn in the mid-diencephalon at higher concentration (5 μM). Thus, ADAM10 function is required for RGC axon guidance at two key guidance decisions. Finally, molecular inhibition of ADAM10 function by electroporating dn-adam10 in the brain neuroepithelium causes defects in RGC axon target recognition (57%) and/or defects in caudal turn (12%), as seen with the pharmacological inhibitor. In contrast, molecular inhibition of ADAM10 within the RGC axons has no effect. Conclusions: These data argue strongly that ADAM10 acts cell non-autonomously within the neuroepithelium to regulate the guidance of RGC axons. This study shows for the first time that a metalloproteinase acts in a cell non-autonomous fashion to direct vertebrate axon growth. It will provide important insights into candidate molecules that could be used to reform nerve connections if destroyed because of injury or disease. References Hattori M, Osterfield M, Flanagan JG. Regulated cleavage of a contact-mediated axon repellent. Science 2000; 289(5483):1360-5. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 2005; 123(2):291-304. Pan D, Rubin GM. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 1997; 90(2):271-80.


Cell Reports ◽  
2019 ◽  
Vol 28 (7) ◽  
pp. 1935-1947.e5
Author(s):  
Lucio M. Schiapparelli ◽  
Sahil H. Shah ◽  
Yuanhui Ma ◽  
Daniel B. McClatchy ◽  
Pranav Sharma ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e65966 ◽  
Author(s):  
James D. Lindsey ◽  
Karen X. Duong-Polk ◽  
Yi Dai ◽  
Duy H. Nguyen ◽  
Christopher K. Leung ◽  
...  

2014 ◽  
Vol 3 (3) ◽  
pp. 7 ◽  
Author(s):  
Katherine P. Gill ◽  
Alex W. Hewitt ◽  
Kathryn C. Davidson ◽  
Alice Pébay ◽  
Raymond C. B. Wong

Development ◽  
2002 ◽  
Vol 129 (2) ◽  
pp. 467-477 ◽  
Author(s):  
Steven W. Wang ◽  
Xiuqian Mu ◽  
William J. Bowers ◽  
Dong-Seob Kim ◽  
Daniel J. Plas ◽  
...  

In mice, Brn3 POU domain transcription factors play essential roles in the differentiation and survival of projection neurons within the retina, inner ear, dorsal root and trigeminal ganglia. During retinal ganglion cell differentiation, Brn3b is expressed first, followed by Brn3a and Brn3c. Targeted deletion of Brn3b, but not Brn3a or Brn3c, leads to a loss of most retinal ganglion cells before birth. However, as a few retinal ganglion cells are still present in Brn3b–/– mice, Brn3a and Brn3c may partially compensate for the loss of Brn3b. To examine the role of Brn3c in retinal ganglion cell development, we generated Brn3b/Brn3c double knockout mice and analyzed their retinas and optic chiasms. Retinal ganglion cell axons from double knockout mice were more severely affected than were those from Brn3b-deficient mice, indicating that Brn3c was required for retinal ganglion cell differentiation and could partially compensate for the loss of Brn3b. Moreover, Brn3c had functions in retinal ganglion cell differentiation separate from those of Brn3b. Ipsilateral and misrouted projections at the optic chiasm were overproduced in Brn3b–/– mice but missing were entirely in optic chiasms of Brn3b/Brn3c double knockout mice, suggesting that Brn3c controlled ipsilateral axon production. Forced expression of Brn3c in Brn3b–/– retinal explants restored neurite outgrowth, demonstrating that Brn3c could promote axon outgrowth in the absence of Brn3b. Our results reveal a complex genetic relationship between Brn3b and Brn3c in regulating the retinal ganglion cell axon outgrowth.


Sign in / Sign up

Export Citation Format

Share Document