Faculty Opinions recommendation of Rab6-dependent retrograde traffic of LAT controls immune synapse formation and T cell activation.

Author(s):  
Cosima Tatiana Baldari
2020 ◽  
Author(s):  
Juan José Saez ◽  
Stéphanie Dogniaux ◽  
Massiullah Shafaq-Zadah ◽  
Ludger Johannes ◽  
Claire Hivroz ◽  
...  

ABSTRACTLAT is an important player of the signaling cascade induced by TCR activation. This adapter molecule is present at the plasma membrane of T lymphocytes and more abundantly in intracellular compartments. Upon T-cell activation the intracellular pool of LAT is recruited to the immune synapse (IS). We previously described two pathways controlling LAT trafficking: retrograde transport from endosomes to the TGN, and anterograde traffic from the Golgi to the IS. We address the specific role of 4 proteins, the GTPase Rab6, the t-SNARE syntaxin-16, the v-SNARE VAMP7 and the golgin GMAP210, in each pathway. Using different methods (endocytosis and Golgi trap assays, confocal and TIRF microscopy, TCR-signalosome pull down) we show that syntaxin-16 is regulating the retrograde transport of LAT whereas VAMP7 is regulating the anterograde transport. Moreover, GMAP210 and Rab6, known to contribute in both pathways, are in our cellular context specifically and respectively involved in anterograde and retrograde transport of LAT. Altogether, our data describe how retrograde and anterograde pathways coordinate LAT enrichment at the IS and point the Golgi as a central hub for the polarized recruitment of LAT to the IS. The role that this finely-tuned transport of signaling molecules plays in T-cell activation is discussed.


2020 ◽  
Vol 21 (8) ◽  
pp. 2859
Author(s):  
Sara G. Dosil ◽  
Amelia Rojas-Gomez ◽  
Francisco Sánchez-Madrid ◽  
Noa B. Martín-Cófreces

The immune synapse (IS) is a well-known intercellular communication platform, organized at the interphase between the antigen presenting cell (APC) and the T cell. After T cell receptor (TCR) stimulation, signaling from plasma membrane proteins and lipids is amplified by molecules and downstream pathways for full synapse formation and maintenance. This secondary signaling event relies on intracellular reorganization at the IS, involving the cytoskeleton and components of the secretory/recycling machinery, such as the Golgi apparatus and the endolysosomal system (ELS). T cell activation triggers a metabolic reprogramming that involves the synthesis of lipids, which act as signaling mediators, and an increase of mitochondrial activity. Then, this mitochondrial activity results in elevated reactive oxygen species (ROS) production that may lead to cytotoxicity. The regulation of ROS levels requires the concerted action of mitochondria and peroxisomes. In this review, we analyze this reprogramming and the signaling implications of endolysosomal, mitochondrial, peroxisomal, and lipidic systems in T cell activation.


Blood ◽  
2016 ◽  
Vol 128 (4) ◽  
pp. 563-573 ◽  
Author(s):  
Marta Pasikowska ◽  
Elisabeth Walsby ◽  
Benedetta Apollonio ◽  
Kirsty Cuthill ◽  
Elizabeth Phillips ◽  
...  

Key Points LN-derived CLL cells have increased capacity for T-cell activation and superior immune synapse formation compared with those from PB. Enhanced CLL cell immunologic function is also linked to PB circulating cells with the propensity to migrate.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 359
Author(s):  
Juan José Saez ◽  
Stephanie Dogniaux ◽  
Massiullah Shafaq-Zadah ◽  
Ludger Johannes ◽  
Claire Hivroz ◽  
...  

LAT is an important player of the signaling cascade induced by TCR activation. This adapter molecule is present at the plasma membrane of T lymphocytes and more abundantly in intracellular compartments. Upon T cell activation the intracellular pool of LAT is recruited to the immune synapse (IS). We previously described two pathways controlling LAT trafficking: retrograde transport from endosomes to the TGN, and anterograde traffic from the Golgi to the IS. We address the specific role of four proteins, the GTPase Rab6, the t-SNARE syntaxin-16, the v-SNARE VAMP7 and the golgin GMAP210, in each pathway. Using different methods (endocytosis and Golgi trap assays, confocal and TIRF microscopy, TCR-signalosome pull down) we show that syntaxin-16 is regulating the retrograde transport of LAT whereas VAMP7 is regulating the anterograde transport. Moreover, GMAP210 and Rab6, known to contribute to both pathways, are in our cellular context, specifically and respectively, involved in anterograde and retrograde transport of LAT. Altogether, our data describe how retrograde and anterograde pathways coordinate LAT enrichment at the IS and point to the Golgi as a central hub for the polarized recruitment of LAT to the IS. The role that this finely-tuned transport of signaling molecules plays in T-cell activation is discussed.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 132-132
Author(s):  
Shok Ping Lim ◽  
Donal McLornan ◽  
Nikolaos Ioannou ◽  
David Darling ◽  
Alan G. Ramsay ◽  
...  

Abstract Introduction MicroRNAs (miRNAs) are short endogenous non-coding RNAs consisting of 18-25 nucleotides in length which influence gene expression and play pivotal roles in a diverse range of cellular processes. Aberrant miRNA expression has been implicated in a variety of cancers, including haematological malignancies. The miR-181 family plays a crucial role in haematopoiesis, including megakaryocytic, erythroid and myeloid differentiation and both B and T cell development and differentiation. We therefore focused our study on validating novel downstream targets of miR-181. Methods A novel functional assay utilising an optimised 3'UTR enriched library and a dual selection strategy (Gäken et al., 2012) was performed to identify biologically relevant targets of miR-181c. BRK1 (BRICK1, SCAR/WAVE Actin Nucleating Complex Subunit) was identified as a potential target and validation was performed by quantitative real time PCR and western blot analysis. Given the potential role of BRK1 in the Wiskott-Aldrich Syndrome Protein Family Verprolin-Homologous Protein-2 (WAVE2) complex and actin polymerisation in T cells, we investigated the influence of the miR-181c-BRK1 axis on T cell function. Knockdown of BRK1, using short hairpin RNA (shRNA) lentiviral vectors, and overexpression of miR-181c, via transfection with miR-181c expression vectors, were performed in Jurkat and primary T cells. T cell activation was examined by measurement of CD69 and CD154 expression and actin polymerisation was quantified by total cellular F-actin content. Immune synapse formation was studied by conjugate formation between T cells and antigen-pulsed B cells. Lastly, lamellipodia formation was investigated by assessing the ability of T cells to spread on anti-CD3 coated slides. Results Target genes downregulated by miR-181c were identified. One such target was BRK1, a component of the WAVE2 complex that has been shown to play a pivotal role in actin polymerisation. Validation experiments showed that overexpression and inhibition of miR-181c had no impact on BRK1 mRNA expression but did in fact modulate protein expression, suggesting that miR-181c regulates BRK1 at the translational level. We demonstrated that primary T cell activation resulted in downregulation of miR-181c and upregulation of BRK1 protein expression, further strengthening our hypothesis that the miR-181c-BRK1 axis may play an important role in T cell activation. Next, we found that loss of BRK1 resulted in reduced T cell activation as shown by decreased expression of CD69 and CD154. Furthermore, we showed that downregulation of BRK1 expression by shRNA resulted in reduced actin polymerisation after T cell stimulation. Reduced expression of BRK1 led to a marked reduction in the total area (in square micrometers) of F-actin accumulation at T cell contact sites and synapses with B cells indicating defective immune synapse formation. Moreover, reduced BRK1 expression resulted in defect in lamellipodia formation in response to T cell receptor stimulation. Similarly, ectopic expression of miR-181c in Jurkat T cells also led to a reduction in T cell activation and actin polymerisation coupled with defects in immune synapse and lamellipodia formation, hence confirming the important role of the miR-181c-BRK1 axis in T cell activation. Lastly, we demonstrated that suppression of BRK1 induced reduced expression of other pivotal proteins in the WAVE2 complex including WAVE2, Abi1 and Sra1. This suggests that impairment of actin polymerisation-dependent T cell functions were a result of instability of the WAVE2 complex following BRK1 suppression. Conclusion For the first time, we hereby demonstrate that BRK1 is a target of miR-181c. Moreover, we have highlighted the potential role of the miR-181c-BRK1 axis in impaired actin polymerisation-dependent T cell function and immune synapse formation. Deregulation of the miR-181c-BRK1 axis requires further evaluation in haematological malignancies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3073-3073 ◽  
Author(s):  
Dan Li ◽  
Patenia Rebecca ◽  
Miguel A. Cruz ◽  
Jeffrey J. Molldrem ◽  
Richard E. Champlin ◽  
...  

Abstract Graft-versus-host-disease (GVHD) is an alloimmune response complicating allogeneic hematopoietic stem cell transplantation (allo-HSCT). Although donor T lymphocytes and recipient antigen presenting cells (APCs) are the primarily mediators of GVHD, the molecular and cellular basis are not well understood. Recent published studies investigated T cell migration and homing in GVHD, especially effects of adhesion molecules including chemokines and integrins. Intermediate filaments (IFs) are cytoskeletal polymers encoded by a large family of differentially expressed genes that provide crucial structural support. As the most abundant IF protein and the only known IF protein in leukocytes, vimentin plays an important role in stabilizing intracellular architecture, maintaining cellular integrity and providing resistance against stress. Vimentin-deficient (Vim-/-) mice are viable with impaired wound healing, and defects in PMN and lymphocyte adhesion to endothelial cells. In addition, Vimentin has been reported to be involved in colitis, Crohn's disease and allograft rejection. Herein, we report that vimentin regulates the organization of proteins in cell adhesion, migration and signaling, all of which are important for T cell activation in GVHD. Using homotypic aggregation assay, we found there was significantly reduced aggregation of primary T cells isolated from Vim-/- mice compared to WT control. However, the expression of both LFA-1 and ICAM-1 are similar between WT and Vim-/- T cells, thus the reduced T cell adhesion is not attributed to LFA-1 expression. We further investigated whether vimentin regulates mouse primary T cell proliferation upon activation in mixed lymphocyte reactions (MLR), and demonstrated there was a significant reduction of both CD4+ and CD8+ T cell proliferation in the absence of vimentin (Vim-/-) compared to WT control. Moreover, the frequency of IFN-γ (Th1) and IL-17 (Th17) producing CD4+ cells was significantly reduced in T cells isolated from Vim-/- mice compared to WT control. To investigate the role of vimentin in regulating TCR-induced activation, we examined the immune synapse formation in mouse CD8+ T cells, and found vimentin was enriched proximal to the membrane and associated with the prominent CD3/LFA-1 cluster upon TCR stimulation. In the control without any TCR stimulation, the predominant pattern was different with vimentin evenly distributed beneath the cell membrane. In the absence of vimentin (Vim-/-), immune synapse failed to form in mouse CD8+ T cells upon TCR stimulation. The data demonstrate that vimentin can regulate immunological synapse function and signal transduction in T cell activation and proliferation. To determine whether vimentin expression in T cells plays a role in GVHD, the MHC class I and II disparate model, C57BL/6 (H-2b) to BALB/c (H-2d) transplantation, was used to establish GVHD. T cells from WT or Vim-/- (C57BL/6 background) mice were used as donors and Balb/c mice as recipients. Irradiated BALB/c mice received 5x106 T cell-depleted bone marrow cells (WT) and 10×106 T cells (WT or Vim-/-). In comparison to WT control, mice received Vim-/- T cells showed a lower mortality rate. Within 8 weeks post-transplantation, about 65% of mice received Vim-/- T cells survived, compared with only less than 10% of control mice received WT T cells (P=0.036; n=15 in each group). Control recipients had severe GVHD in the skin, intestine and liver. Mice received Vim-/- T cells exhibited only mild changes in these organs, reflected in their significantly lower GVHD scores. There were significantly reduced donor-derived CD4+ and CD8+ T cells in secondary lymphoid organs. Thus, the reduced homing and proliferation of Vim-/- T cells in vivo led to the reduced mortality and morbidity associated with GVHD. In summary, we have shown that there are significantly reduced T cell adhesion, proliferation and Th1/17 polarization in Vim-/- T cells, and vimentin participates in TCR clustering and immunological synapse formation in CD8+ T cells. Furthermore, vimentin plays an important role in GVHD through regulating donor T cell adhesion, proliferation and activation. Our data will not only significantly advance our knowledge of GVHD, but also define a new function of vimentin and IF proteins in health and diseases, and thus provide a rationale for using vimentin inhibitors as potential novel therapeutic interventions for GVHD. Disclosures No relevant conflicts of interest to declare.


Immunity ◽  
2011 ◽  
Vol 34 (6) ◽  
pp. 919-931 ◽  
Author(s):  
Akiko Hashimoto-Tane ◽  
Tadashi Yokosuka ◽  
Kumiko Sakata-Sogawa ◽  
Machie Sakuma ◽  
Chitose Ishihara ◽  
...  

2012 ◽  
Vol 70 (5) ◽  
pp. 909-922 ◽  
Author(s):  
Sarah De Clercq ◽  
Olivier Zwaenepoel ◽  
Evelien Martens ◽  
Joël Vandekerckhove ◽  
Aude Guillabert ◽  
...  

2018 ◽  
Vol 215 (4) ◽  
pp. 1245-1265 ◽  
Author(s):  
Jean-Marie Carpier ◽  
Andres E. Zucchetti ◽  
Laurence Bataille ◽  
Stéphanie Dogniaux ◽  
Massiullah Shafaq-Zadah ◽  
...  

The adapter molecule linker for activation of T cells (LAT) orchestrates the formation of signalosomes upon T cell receptor (TCR) stimulation. LAT is present in different intracellular pools and is dynamically recruited to the immune synapse upon stimulation. However, the intracellular traffic of LAT and its function in T lymphocyte activation are ill defined. We show herein that LAT, once internalized, transits through the Golgi–trans-Golgi network (TGN), where it is repolarized to the immune synapse. This retrograde transport of LAT depends on the small GTPase Rab6 and the target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) Syntaxin-16, two regulators of the endosome-to-Golgi/TGN retrograde transport. We also show in vitro in Syntaxin-16– or Rab6-silenced human cells and in vivo in CD4+ T lymphocytes of the Rab6 knockout mouse that this retrograde traffic controls TCR stimulation. These results establish that the retrograde traffic of LAT from the plasma membrane to the Golgi-TGN controls the polarized delivery of LAT at the immune synapse and T lymphocyte activation.


2006 ◽  
Vol 26 (14) ◽  
pp. 5497-5508 ◽  
Author(s):  
Kazuhiro Ishiguro ◽  
Todd Green ◽  
Joseph Rapley ◽  
Heather Wachtel ◽  
Cosmas Giallourakis ◽  
...  

ABSTRACT CARMA1 is a central regulator of NF-κB activation in lymphocytes. CARMA1 and Bcl10 functionally interact and control NF-κB signaling downstream of the T-cell receptor (TCR). Computational analysis of expression neighborhoods of CARMA1-Bcl10MALT 1 for enrichment in kinases identified calmodulin-dependent protein kinase II (CaMKII) as an important component of this pathway. Here we report that Ca2+/CaMKII is redistributed to the immune synapse following T-cell activation and that CaMKII is critical for NF-κB activation induced by TCR stimulation. Furthermore, CaMKII enhances CARMA1-induced NF-κB activation. Moreover, we have shown that CaMKII phosphorylates CARMA1 on Ser109 and that the phosphorylation facilitates the interaction between CARMA1 and Bcl10. These results provide a novel function for CaMKII in TCR signaling and CARMA1-induced NF-κB activation.


Sign in / Sign up

Export Citation Format

Share Document