Faculty Opinions recommendation of An in vitro platform supports generation of human innate lymphoid cells from CD34+ hematopoietic progenitors that recapitulate ex vivo identity.

Author(s):  
Linda Quatrini
Immunity ◽  
2021 ◽  
Vol 54 (10) ◽  
pp. 2417-2432.e5
Author(s):  
Daniela Carolina Hernández ◽  
Kerstin Juelke ◽  
Nils Christian Müller ◽  
Pawel Durek ◽  
Bilge Ugursu ◽  
...  

2016 ◽  
Vol 213 (4) ◽  
pp. 569-583 ◽  
Author(s):  
Ai Ing Lim ◽  
Silvia Menegatti ◽  
Jacinta Bustamante ◽  
Lionel Le Bourhis ◽  
Matthieu Allez ◽  
...  

Group 2 innate lymphoid cells (ILC2) include IL-5– and IL-13–producing CRTh2+CD127+ cells that are implicated in early protective immunity at mucosal surfaces. Whereas functional plasticity has been demonstrated for both human and mouse ILC3 subsets that can reversibly give rise to IFN-γ–producing ILC1, plasticity of human or mouse ILC2 has not been shown. Here, we analyze the phenotypic and functional heterogeneity of human peripheral blood ILC2. Although subsets of human CRTh2+ ILC2 differentially express CD117 (c-kit receptor), some ILC2 surface phenotypes are unstable and can be modulated in vitro. Surprisingly, human IL-13+ ILC2 can acquire the capacity to produce IFN-γ, thereby generating plastic ILC2. ILC2 cultures demonstrated that IFN-γ+ ILC2 clones could be derived and were stably associated with increased T-BET expression. The inductive mechanism for ILC2 plasticity was mapped to the IL-12–IL-12R signaling pathway and was confirmed through analysis of patients with Mendelian susceptibility to mycobacterial disease due to IL-12Rβ1 deficiencies that failed to generate plastic ILC2. We also detected IL-13+IFN-γ+ ILC2 ex vivo in intestinal samples from Crohn’s disease patients. These results demonstrate cytokine production plasticity for human ILC2 and further suggest that environmental cues can dictate ILC phenotype and function for these tissue-resident innate effector cells.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3067-3076 ◽  
Author(s):  
Giovanna Cutrona ◽  
Nicolò Leanza ◽  
Massimo Ulivi ◽  
Giovanni Melioli ◽  
Vito L. Burgio ◽  
...  

Abstract This study shows that human postthymic T cells express CD10 when undergoing apoptosis, irrespective of the signal responsible for initiating the apoptotic process. Cells from continuous T-cell lines did not normally express CD10, but became CD10+ when induced into apoptosis by human immunodeficiency virus (HIV) infection and exposure to CD95 monoclonal antibody, etoposide, or staurosporin. Inhibitors of caspases blocked apoptosis and CD10 expression. Both CD4+ and CD8+ T cells purified from normal peripheral blood expressed CD10 on apoptotic induction. CD10 was newly synthesized by the apoptosing cells because its expression was inhibited by exposure to cycloheximide and CD10 mRNA became detectable by reverse transcription-polymerase chain reaction in T cells cultured under conditions favoring apoptosis. To show CD10 on T cells apoptosing in vivo, lymph node and peripheral blood T cells from HIV+ subjects were used. These suspensions were composed of a substantial, although variable, proportion of apoptosing T cells that consistently expressed CD10. In contrast, CD10+ as well as spontaneously apoptosing T cells were virtually absent in peripheral blood from normal individuals. Collectively, these observations indicate that CD10 may represent a reliable marker for identifying and isolating apoptosing T cells in vitro and ex vivo and possibly suggest novel functions for surface CD10 in the apoptotic process of lymphoid cells.


2020 ◽  
Vol 217 (4) ◽  
Author(s):  
Ivan Ting Hin Fung ◽  
Poornima Sankar ◽  
Yuanyue Zhang ◽  
Lisa S. Robison ◽  
Xiuli Zhao ◽  
...  

Increasing evidence has challenged the traditional view about the immune privilege of the brain, but the precise roles of immune cells in regulating brain physiology and function remain poorly understood. Here, we report that tissue-resident group 2 innate lymphoid cells (ILC2) accumulate in the choroid plexus of aged brains. ILC2 in the aged brain are long-lived, are relatively resistant to cellular senescence and exhaustion, and are capable of switching between cell cycle dormancy and proliferation. They are functionally quiescent at homeostasis but can be activated by IL-33 to produce large amounts of type 2 cytokines and other effector molecules in vitro and in vivo. Intracerebroventricular transfer of activated ILC2 revitalized the aged brain and enhanced the cognitive function of aged mice. Administration of IL-5, a major ILC2 product, was sufficient to repress aging-associated neuroinflammation and alleviate aging-associated cognitive decline. Targeting ILC2 in the aged brain may provide new avenues to combat aging-associated neurodegenerative disorders.


Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4641-4651 ◽  
Author(s):  
Pankaj Gupta ◽  
Theodore R. Oegema ◽  
Joseph J. Brazil ◽  
Arkadiusz Z. Dudek ◽  
Arne Slungaard ◽  
...  

Abstract Stem cell localization, conservation, and differentiation is believed to occur in niches in the marrow stromal microenvironment. Our recent observation that long-term in vitro human hematopoiesis requires a stromal heparan sulfate proteoglycan (HSPG) led us to hypothesize that such HSPG may orchestrate the formation of the stem cell niche. We compared the structure and function of HS from M2-10B4, a hematopoiesis-supportive cell line, with HS from a nonsupportive cell line, FHS-173-We. Long-term culture-initiating cell (LTC-IC) maintenance was enhanced by PG from supportive cells but not by PG from nonsupportive cells (P < .005). The supportive HS were significantly larger and more highly sulfated than the nonsupportive HS. Specifically, supportive HS contained higher 6-O-sulfation on the glucosamine residues. In agreement with these observations, purified 6-O-sulfated heparin and highly 6-O-sulfated bovine kidney HS similarly maintained LTC-IC. In contrast, completely desulfated heparin, N-sulfated heparin, and unmodified heparin did not support LTC-IC maintenance. Moreover, the supportive HS promoted LTC-IC maintenance but not differentiation of CD34+/HLA-DR−cells into colony-forming cells (CFCs) and mature blood cells. The supportive HS but not the nonsupportive HS bound both cytokines and matrix components critical for hematopoiesis, including interleukin-3 (IL-3), macrophage inflammatory protein-1 (MIP-1), and thrombospondin (TSP). Significantly more CD34+ cells adhered directly to immobilized O-sulfated heparin than to N-sulfated or desulfated heparin. Thus, hematopoiesis-supportive stromal HSPG possessing large, highly 6-O-sulfated HS mediate the juxtaposition of hematopoietic progenitors with stromal cells, specific growth-promoting (IL-3) and growth-inhibitory (MIP-1 and platelet factor 4 [PF4]) cytokines, and extracellular matrix (ECM) proteins such as TSP. We conclude that the structural specificity of stromal HSPG that determines the selective colocalization of cytokines and ECM components leads to the formation of discrete niches, thereby orchestrating the controlled growth and differentiation of stem cells. These findings may have important implications for ex vivo expansion of and gene transfer into primitive hematopoietic progenitors.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 143-143
Author(s):  
Jarrod A Dudakov ◽  
Alan M Hanash ◽  
Lauren F. Young ◽  
Natalie V Singer ◽  
Mallory L West ◽  
...  

Abstract Abstract 143 Despite being exquisitely sensitive to insult, the thymus is remarkably resilient in young healthy animals. Endogenous regeneration of the thymus is a crucial function that allows for renewal of immune competence following infection or immunodepletion caused by cytoreductive chemotherapy or radiation. However, the mechanisms governing this regeneration remain poorly understood. Thymopoiesis is a highly complex process involving cross-talk between developing thymocytes and their supporting non-hematopoietic stromal microenvironment, which includes highly specialized thymic epithelial cells (TECs) that are crucial for T cell development. IL-22 is a recently identified cytokine predominantly associated with maintenance of barrier function at mucosal surfaces. Here we demonstrate for the first time a critical role for IL-22 in endogenous thymic repair. Comparing IL-22 KO and WT mice we observed that while IL-22 deficiency was redundant for steady-state thymopoiesis, it led to a pronounced and prolonged loss of thymus cellularity following sublethal total body irradiation (SL-TBI), which included depletion of both thymocytes (p=0.0001) and TECs (p=0.003). Strikingly, absolute levels of IL-22 were markedly increased following thymic insult (p<0.0001) despite the significant depletion of thymus cellularity. This resulted in a profound increase in the production of IL-22 on a per cell basis (p<0.0001). These enhanced levels of IL-22 peaked at days 5 to 7 after SL-TBI, immediately following the nadir of thymic cellularity. This was demonstrated by a strong negative correlation between thymic cellularity and absolute levels of IL-22 (Fig 1a). In mucosal tissues the regulation of IL-22 production has been closely associated with IL-23 produced by dendritic cells (DCs) and ex vivo incubation of cells with IL-23 stimulates the production of IL-22. Following thymic insult there was a significant increase in the amount of IL-23 produced by DCs (Fig 1b) resulting in similar kinetics of intrathymic levels of IL-22 and IL-23. We identified a population of radio-resistant CD3−CD4+IL7Ra+RORg(t)+ thymic innate lymphoid cells (tILCs) that upregulate both their production of IL-22 (Fig 1c) and expression of the IL-23R (p=0.0006) upon exposure to TBI. This suggests that they are responsive to IL-23 produced by DCs in vivo following TBI and, in fact, in vitro stimulation of tILCs by IL-23 led to upregulation of Il-22 production by these cells (Fig 1d). We found expression of the IL-22Ra on cortical and medullary TECs (cTECs and mTECs, respectively), and uniform expression across both mature MHCIIhi mTEC (mTEChi) and immature MHCIIlo mTECs (mTEClo). However, in vitro stimulation of TECs with recombinant IL-22 led to enhanced TEC proliferation primarily in cTEC and mTEClo subsets (p=0.002 and 0.004 respectively). It is currently unclear if IL-22 acts as a maturation signal for mTECs, however, the uniform expression of IL-22Ra between immature mTEClo and mature Aire-expressing mTEChi, together with the preferential promotion of proliferation amongst mTEClo and cTEC seem to argue against IL-22 as a maturational signal but rather as promoter of proliferation, which ultimately leads to terminal differentiation of TECs. Of major clinical importance, administration of exogenous IL-22 led to enhanced thymic recovery (Fig. 1e) following TBI, primarily by promoting the proliferation of TECs. Consistent with this, the administration of IL-22 also led to significantly enhanced thymopoiesis following syngeneic BMT. Taken together these findings suggest that following thymic insult, and specifically the depletion of developing thymocytes, upregulation of IL-23 by DCs induces the production of IL-22 by tILCs and regeneration of the supporting microenvironment. This cascade of events ultimately leads to rejuvenation of the thymocyte pool (Fig. 1f). These studies not only reveal a novel pathway underlying endogenous thymic regeneration, but also identify a novel regenerative strategy for improving immune competence in patients whose thymus has been damaged from infection, age or cytoreductive conditioning required for successful hematopoietic stem cell transplantation. Finally, these findings may also provide an avenue of study to further understand the repair and regeneration of other epithelial tissues such as skin, lung and breast. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
J-H Schroeder ◽  
T Zabinski ◽  
J F Neves ◽  
GM Lord

ABSTRACTHuge progress has been made in understanding the biology of innate lymphoid cells (ILC) by adopting several well-known concepts of T cell biology. As such flow cytometry gating strategies and markers, such as CD90, to identify ILC were discovered. Here we report that most non-NK intestinal ILC have a high expression of CD90 as expected, but surprisingly some have only a low or even no expression of this marker. CD90-negative CD127+ ILC were identified among all ILC subsets in the gut. CD90-negative cLP ILC2 were frequent at steady state. The frequency of CD90-negative CD127+ ILC was dependent on stimulatory cues in vitro and in vivo, and CD90-negative CD127+ ILC played a functional role as a source of IL-13, IFNγ and IL-17A at steady state and upon dextran sulphate sodium-elicited colitis. Hence, this study highlights for the first time that CD90 is not constitutively expressed by functional ILC in the gut.


2021 ◽  
Vol 6 (57) ◽  
pp. eabd0359
Author(s):  
Luke B. Roberts ◽  
Corinna Schnoeller ◽  
Rita Berkachy ◽  
Matthew Darby ◽  
Jamie Pillaye ◽  
...  

Innate lymphoid cells (ILCs) are critical mediators of immunological and physiological responses at mucosal barrier sites. Whereas neurotransmitters can stimulate ILCs, the synthesis of small-molecule neurotransmitters by these cells has only recently been appreciated. Group 2 ILCs (ILC2s) are shown here to synthesize and release acetylcholine (ACh) during parasitic nematode infection. The cholinergic phenotype of pulmonary ILC2s was associated with their activation state, could be induced by in vivo exposure to extracts of Alternaria alternata or the alarmin cytokines interleukin-33 (IL-33) and IL-25, and was augmented by IL-2 in vitro. Genetic disruption of ACh synthesis by murine ILC2s resulted in increased parasite burdens, lower numbers of ILC2s, and reduced lung and gut barrier responses to Nippostrongylus brasiliensis infection. These data demonstrate a functional role for ILC2-derived ACh in the expansion of ILC2s for maximal induction of type 2 immunity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sabrina B. Bennstein ◽  
Sandra Weinhold ◽  
Özer Degistirici ◽  
Robert A. J. Oostendorp ◽  
Katharina Raba ◽  
...  

Innate lymphoid cells (ILCs) and in particular ILC3s have been described to be vital for mucosal barrier functions and homeostasis within the gastrointestinal (GI) tract. Importantly, IL-22-secreting ILC3 have been implicated in the control of inflammatory bowel disease (IBD) and were shown to reduce the incidence of graft-versus-host disease (GvHD) as well as the risk of transplant rejection. Unfortunately, IL-22-secreting ILC3 are primarily located in mucosal tissues and are not found within the circulation, making access to them in humans challenging. On this account, there is a growing desire for clinically applicable protocols for in vitro generation of effector ILC3. Here, we present an approach for faithful generation of functionally competent human ILC3s from cord blood-derived CD34+ hematopoietic progenitors on layers of human mesenchymal stem cells (MSCs) generated in good manufacturing practice (GMP) quality. The in vitro-generated ILC3s phenotypically, functionally, and transcriptionally resemble bona fide tissue ILC3 with high expression of the transcription factors (TF) RorγT, AHR, and ID2, as well as the surface receptors CD117, CD56, and NKp44. Importantly, the majority of ILC3 belonged to the desired effector subtype with high IL-22 and low IL-17 production. The protocol thus combines the advantages of avoiding xenogeneic components, which were necessary in previous protocols, with a high propensity for generation of IL-22-producing ILC3. The present approach is suitable for the generation of large amounts of ILC3 in an all-human system, which could facilitate development of clinical strategies for ILC3-based therapy in inflammatory diseases and cancer.


Author(s):  
Bertha Estrella ◽  
Elena N. Naumova ◽  
Magda Cepeda ◽  
Trudy Voortman ◽  
Peter D. Katsikis ◽  
...  

Outdoor air pollution is associated with respiratory infections and allergies, yet the role of innate lymphoid cells (ILCs) in pathogen containment and airway hyperresponsiveness relevant to effects of air pollutants on ILCs is poorly understood. We conducted a systematic review to evaluate the available evidence on the effect of outdoor air pollutants on the lung type 1 (ILC1) and type 2 ILCs (ILC2) subsets. We searched five electronic databases (up to Dec 2018) for studies on the effect of carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), diesel exhaust particles (DEP), ozone (O3), and particulate matter (PM) on respiratory ILCs. Of 2209 identified citations, 22 full-text papers were assessed for eligibility, and 12 articles describing experimental studies performed in murine strains (9) and on human blood cells (3) were finally selected. Overall, these studies showed that exposure to PM, DEP, and high doses of O3 resulted in a reduction of interferon gamma (IFN-γ) production and cytotoxicity of ILC1. These pollutants and carbon nanotubes stimulate lung ILC2s, produce high levels of interleukin (IL)-5 and IL-13, and induce airway hyperresponsiveness. These findings highlight potential mechanisms by which human ILCs react to air pollution that increase the susceptibility to infections and allergies.


Sign in / Sign up

Export Citation Format

Share Document