scholarly journals Data on the Orthoptera fauna of characteristic agricultural landscape in the Carpathian Lowland

2021 ◽  
pp. 25-34
Author(s):  
Dóra Arnóczkyné Jakab ◽  
Antal Nagy

Orthoptera fauna and assemblages of natural and semi-natural grasslands of the Hungarian Lowland are well-known, however, little is known about assemblages living in agricultural and anthropogenic habitats such as arable lands, roadsides, hedges, and riverbanks. Due to climate change, intensification of agriculture, and change of habitat use, these habitat types become increasingly important. To collect data on these mainly unknown habitat types, a three-year study was carried out on the Orthoptera fauna and assemblages of the firth region of the Tisza and Sajó rivers. This area was mainly unknown, and our research contributes to increasing knowledge and provides a base for further investigations. In the 40 sampling sites of the studied region, an occurrence of 30 Orthoptera species was recorded based on 2241 sampled individuals. In this study, we provide 540 new distribution data records of orthopterans that means an almost eightfold increase of the known data. Orthoptera assemblages of different agricultural habitat types showed significant differences considering both species richness and composition. Data suggested that non-cultivated habitat patches of dirt-roads, roadsides and stubble fields and even extensively used pastures, hayfields and alfalfa, red clover, and even wheat fields can preserve relatively species-rich Orthoptera assemblages. Contrary weedy sites of these cultivars and intensively used arable lands (maize, sunflower and rape fields) showed extremely low species diversity.

2019 ◽  
pp. 31-35
Author(s):  
Dóra Arnóczkyné Jakab ◽  
Antal Nagy

The goal of agri-environmental schemes (AES) and greening programs are protecting and increasing biodiversity in agricultural lands. The evaluation of effectiveness of AES needs further investigations. For the purpose of investigations, species and species groups should be selected which can indicate the effects of changes in landscape use on biodiversity. Bumblebees are good indicators for this purpose. The role of bumblebees in pollination is well studied but in the case of different crops, much less detailed data are available. In 2018, bumblebee assemblages of 44 sites belonged to 8 different agricultural and semi-natural habitat types were studied in the surroundings of Sajószöged, Tiszaújváros and Derecske. This study provides new distribution data of 8 bumblebee species in three 10×10 km UTM cells covering the sampling area. According to our results, the alfalfa and red clover fields and semi-natural grasslands has more species rich and abundant bumblebee assemblages than different crop fields (sunflower, oilseed radish and vegetable morrow) and can help protect bumblebee assemblages of agricultural lands. Based on the collected distribution and abundance data, the role of the bumblebees in pollination of the studied crops should be re-evaluated.  


2017 ◽  
Vol 23 (12) ◽  
pp. 1393-1407 ◽  
Author(s):  
Nicolas Titeux ◽  
Dirk Maes ◽  
Toon Van Daele ◽  
Thierry Onkelinx ◽  
Risto K. Heikkinen ◽  
...  

2019 ◽  
Vol 27 (3) ◽  
pp. 199-206
Author(s):  
Rafael Gustavo Becker ◽  
Gabriela Paise ◽  
Marco Aurélio Pizo

AbstractNatural grasslands are declining due to loss, fragmentation and degradation, resulting in the decline of grassland-associated bird species. The Pampas Biome in south Brazil is not exception to this worldwide trend, facing the expansion of croplands and afforestation with exotic tree plantations for cellulose production. To cope with the continuous degradation and loss of grasslands, restoration is an important conservation strategy, but basic information regarding the response of the fauna to restoration practices in southeastern South America grasslands is lacking. Here we compared the structure of bird communities in natural grasslands and revegetated grasslands after mining by planting native and exotic grasses. We sampled birds using 5-min point counts with unlimited radius in three replicates of each habitat (natural and revegetated grasslands; average size 22.2 ± 2.3 ha). We also compared the vegetation density between the two habitat types. The structure of bird communities at natural and revegetated grasslands differed, with natural grasslands presenting higher species richness (42 vs. 35 species) and abundance (1459 vs. 839 records) than revegetated areas, and also a distinct species composition. Ten of the 11 grassland species that were associated to one of the two habitat types occurred more frequently in natural grasslands, which had higher vegetation density than revegetated areas. Even a decade after the beginning of the restoration process, revegetated areas did not resemble natural grasslands in bird species richness, abundance, and composition. These results differed from another study conducted in the Brazilian Pampas in which native plant species were used to actively restore a grassland. Therefore, until we have additional studies addressing the use of exotic grasses for the recovery of bird communities in South America grasslands, we encourage greater representation of native plant species in restoration projects.


2019 ◽  
Vol 155 (3) ◽  
pp. 179-186
Author(s):  
Sousan Alavi ◽  
Mehdi Esfandiari ◽  
Mohammad Mahdi Rabieh

The holarctic moth genus Catocala Schrank (1802) (Erebidae: Erebinae, Catocalini) includes about 300 species that are often monophagous on oak (Quercus), willow (Salix) and poplar (Populus). In this research, we studied the moths of the genus Catocala in Iran that were collected by light traps in different Iranian provinces, mostly during 2010–2018. Our results revealed eight species and two subspecies of Catocala from the provinces of Kermanshah, Lorestan, Chaharmahal-va Bakhtiari, Ilam, Khuzestan, Kohgiluyeh-va Boyerahmad, Fars, Kerman, Khorasan-e Jonubi, Yazd and Khorasan-e Razavi. Among the records there are 14 new provincial records. Overall, we list 20 species and four subspecies of Catocala as occurring in Iran. This list is compiled from our own research and a review of existing literature.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 243
Author(s):  
Javier Alcocer ◽  
Luis A. Oseguera ◽  
Diana Ibarra-Morales ◽  
Elva Escobar ◽  
Lucero García-Cid

High-mountain lakes are among the most comparable ecosystems globally and recognized sentinels of global change. The present study pursued to identify how the benthic macroinvertebrates (BMI) communities of two tropical, high mountain lakes, El Sol and La Luna, Central Mexico, have been affected by global/regional environmental pressures. We compared the environmental characteristics and the BMI communities between 2000–2001 and 2017–2018. We identified three principal environmental changes (the air and water temperature increased, the lakes’ water level declined, and the pH augmented and became more variable), and four principal ecological changes in the BMI communities [a species richness reduction (7 to 4), a composition change, and a dominant species replacement all of them in Lake El Sol, a species richness increase (2 to 4) in Lake La Luna, and a drastic reduction in density (38% and 90%) and biomass (92%) in both lakes]. The air and water temperature increased 0.5 °C, and lakes water level declined 1.5 m, all suggesting an outcome of climate change. Contrarily to the expected acidification associated with acid precipitation, both lakes deacidified, and the annual pH fluctuation augmented. The causes of the deacidification and the deleterious impacts on the BMI communities remained to be identified.


2013 ◽  
Vol 83 (3) ◽  
pp. 659-666 ◽  
Author(s):  
N. Sekulić ◽  
S. Marić ◽  
L. Galambos ◽  
D. Radošević ◽  
J. Krpo-Ćetković

2021 ◽  
Vol 13 (14) ◽  
pp. 2649
Author(s):  
Hafiz Ali Imran ◽  
Damiano Gianelle ◽  
Michele Scotton ◽  
Duccio Rocchini ◽  
Michele Dalponte ◽  
...  

Plant biodiversity is an important feature of grassland ecosystems, as it is related to the provision of many ecosystem services crucial for the human economy and well-being. Given the importance of grasslands, research has been carried out in recent years on the potential to monitor them with novel remote sensing techniques. In this study, the optical diversity (also called spectral diversity) approach was adopted to check the potential of using high-resolution hyperspectral images to estimate α-diversity in grassland ecosystems. In 2018 and 2019, grassland species composition was surveyed and canopy hyperspectral data were acquired at two grassland sites: Monte Bondone (IT-MBo; species-rich semi-natural grasslands) and an experimental farm of the University of Padova, Legnaro, Padua, Italy (IT-PD; artificially established grassland plots with a species-poor mixture). The relationship between biodiversity (species richness, Shannon’s, species evenness, and Simpson’s indices) and optical diversity metrics (coefficient of variation-CV and standard deviation-SD) was not consistent across the investigated grassland plant communities. Species richness could be estimated by optical diversity metrics with an R = 0.87 at the IT-PD species-poor site. In the more complex and species-rich grasslands at IT-MBo, the estimation of biodiversity indices was more difficult and the optical diversity metrics failed to estimate biodiversity as accurately as in IT-PD probably due to the higher number of species and the strong canopy spatial heterogeneity. Therefore, the results of the study confirmed the ability of spectral proxies to detect grassland α-diversity in man-made grassland ecosystems but highlighted the limitations of the spectral diversity approach to estimate biodiversity when natural grasslands are observed. Nevertheless, at IT-MBo, the optical diversity metric SD calculated from post-processed hyperspectral images and transformed spectra showed, in the red part of the spectrum, a significant correlation (up to R = 0.56, p = 0.004) with biodiversity indices. Spatial resampling highlighted that for the IT-PD sward the optimal optical pixel size was 1 cm, while for the IT-MBo natural grassland it was 1 mm. The random pixel extraction did not improve the performance of the optical diversity metrics at both study sites. Further research is needed to fully understand the links between α-diversity and spectral and biochemical heterogeneity in complex heterogeneous ecosystems, and to assess whether the optical diversity approach can be adopted at the spatial scale to detect β-diversity. Such insights will provide more robust information on the mechanisms linking grassland diversity and optical heterogeneity.


2015 ◽  
Vol 46 (4) ◽  
pp. 159-166 ◽  
Author(s):  
J. Pěknicová ◽  
D. Petrus ◽  
K. Berchová-Bímová

AbstractThe distribution of invasive plants depends on several environmental factors, e.g. on the distance from the vector of spreading, invaded community composition, land-use, etc. The species distribution models, a research tool for invasive plants spread prediction, involve the combination of environmental factors, occurrence data, and statistical approach. For the construction of the presented distribution model, the occurrence data on invasive plants (Solidagosp.,Fallopiasp.,Robinia pseudoaccacia,andHeracleum mantegazzianum) and Natura 2000 habitat types from the Protected Landscape Area Kokořínsko have been intersected in ArcGIS and statistically analyzed. The data analysis was focused on (1) verification of the accuracy of the Natura 2000 habitat map layer, and the accordance with the habitats occupied by invasive species and (2) identification of a suitable scale of intersection between the habitat and species distribution. Data suitability was evaluated for the construction of the model on local scale. Based on the data, the invaded habitat types were described and the optimal scale grid was evaluated. The results show the suitability of Natura 2000 habitat types for modelling, however more input data (e.g. on soil types, elevation) are needed.


Weed Science ◽  
2007 ◽  
Vol 55 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Lynn M. Sosnoskie ◽  
Edward C. Luschei ◽  
Mark A. Fanning

The importance of managing weeds in seminatural habitats that are adjacent to farm fields is unclear. Weedy-margin vegetation may harbor pests or pathogens and may ALSo serve as source populations for ongoing immigration of weeds into the field. It is ALSo possible, however, that margin vegetation provides habitat for organisms that consume weed seeds or suppress the likelihood of pest or pathogen outbreak. We examined the nature of margin habitat using spatial-scaling of Weed-Species richness as an ecological assay. In 2003, we recorded the occurrence of weedy species along the perimeters of 63 fields in Wisconsin. The fields were distributed within six counties that differed in topography, geological history, local climate, and soil type and which spanned the range of variability in the agricultural landscape. We identified seven habitats that differed in geology and land use. The relationship between species richness and margin class was estimated using an analog of the power law. Additionally, we investigated broadscale correlates of habitat heterogeneity at the field level, using a modeling strategy that included additional explanatory factors logically connected to plant diversity. Using a model-confrontation approach, the survey supported the inclusion of two topographical diversity indices, elevation gradient and a field-shape index, into our model. Our broadscale survey provides information on one of a suite of important considerations needed to make decisions about the importance of managing weeds in field margins.


Sign in / Sign up

Export Citation Format

Share Document