scholarly journals Water relations composition among Egyptian cotton genotypes under water deficit

2021 ◽  
pp. 5-15
Author(s):  
Maamoun A. Abdel-Moneam ◽  
Waleed A. E. Abido ◽  
Mohammed H. Ghoneima ◽  
Ágnes Hadházy ◽  
László Zsombik ◽  
...  

Background: water shortage is one of the major factor effects on growth characters and yield of most crops. Objective: this study was conducted to get to know the reactions of some Egyptian cotton genotypes to water deficit. Methods: The genetic materials used in this study included thirteen cotton genotypes belonging to Gossypium barbadense L., from the Cotton Research Institute (CRI), which was devoted to establishing the experimental materials for this investigation. Results: the ratio of GCA/SCA was less than unity for all studied indices, indicating predominance of non-additive gene action (dominance and epistasis), which is an important in exploitation of heterosis through hybrid breeding. Results: The data showed significant reduction in water relationship characters for all parental genotypes under stress conditions. The Egyptian variety Giza 68 gave high values for most water relationship characters. Data revealed that the greater the value of tolerance index is, the larger the yield reduction is under water deficit conditions and the higher the stress sensitivity is becoming. The parental genotypes Giza 96 showed the highest reduction in yield under water deficit conditions. At the same time, the cross combination Minufy x Australy showed higher values of yield reduction followed by the combinations Giza 67 x Australy. Of the male parents, the Russian genotype 10229 recorded the best GCA values for most water relationship characters. At the same time, the female parents, the old Egyptian genotype Giza 67 recorded the best values and exhibited good general combined for most water relationship characters. The cross combinations Giza 86 x Pima S6, Giza 77 x Pima S6, Giza 94 x Dandra and Giza 96 x Australy showed significant desirable SCA effect for most characters. Conclusion: relative water content %, osmotic pressure, chlorophyll and carotenoids content indicates better availability of water in the cell, which increases the photosynthetic rate. Also, the higher level of proline accumulation in the leaves which was recorded under deficit water suggests that the production of proline is probably a common response of plant under water deficit conditions.

2020 ◽  
pp. 5-18
Author(s):  
Maamoun A. Abdel-Moneam ◽  
Mohammed H. Ghoneima ◽  
Waleed A. E. Abido ◽  
Ágnes Hadházy ◽  
Yaser M. El-Mansy ◽  
...  

Two field experiments were carried out during the 2014 and 2015 seasons to evaluate certain genotypes of Egyptian cotton under well irrigated and water stress conditions. The cross combination Giza 69 x Australy recorded the best values for better parent heterosis for all physiological measurements and earliness index under well irrigated and deficit conditions. Of the female parents, Giza 86 was found to be a good general combiner for most yield characters under both normal and stress conditions, followed by Giza 94. Data illustrated that Giza 45 was the best general combiner for most fiber quality traits under both conditions. The cross combinations Giza 86 x Dandra and Giza 69 x Pima S6 showed significant positive SCA values for seed cotton and lint yield/plant under well irrigated and water deficit conditions. However, the combinations Giza 77 x PimaS6 and Giza 94 x 10229 recorded significant positive SCA effects for seed cotton yield/plant under stress. Whilst, the cross Giza 68 x 10229 recorded significant desirable SCA effects for most fiber quality properties. In this context, the estimates significant positive general and specific combining ability effects indicated that the epistasis and/or dominance effects for F1 hybrid in cotton could be important to a certain extent.


Author(s):  
M.A. Abdel-Monaem ◽  
W.A.E. Abido ◽  
Ágnes Hadházy ◽  
M.H. Ghoneima ◽  
Y.M. EL-Mansy ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2155 ◽  
Author(s):  
Grašič ◽  
Golob ◽  
Vogel-Mikuš ◽  
Gaberščik

Climate change can result in extreme droughts, significantly affecting crop production. C4 crop proso millet (Panicum miliaceum L.) has the lowest water consumption among all of the cereal crops. Understanding its survival mechanisms is thus crucial for agriculture. Furthermore, yield reduction does not only occur directly due to water shortage, but is also a consequence of an impaired element uptake during drought. This study aimed to examine the effect of water deficiency on proso millet leaf traits, plant biomass partition, and yield. In addition, leaf element contents were analysed, including silicon, which is an important multifunctional element for grasses. The majority of the measured parameters showed little change from the control to the moderate and severe water shortage treatments, even though the soil moisture levels differed significantly. The most pronounced reduction in comparison to the control was for leaf biomass, leaf stomatal conductance, and leaf silicon, phosphorus, calcium, and sulphur contents. Conversely, an increase was obtained for leaf potassium and chlorine contents. Panicle biomass was the same for all plant groups. Leaf silicon was positively correlated to reflectance in the UV region, while leaf calcium was negatively correlated to reflectance in the visible regions, which might prevent damage due to short-wave UV radiation and provide sufficient visible light for photosynthesis. The efficient light and water management, reduction of leaf biomass, and same-sized root system may be the mechanisms that mitigate the negative effects of water shortage in proso millet.


Botany ◽  
2012 ◽  
Vol 90 (2) ◽  
pp. 79-91 ◽  
Author(s):  
Nasreddine Yousfi ◽  
Ines Slama ◽  
Chedly Abdelly

The aims of this study were to investigate the effect of prolonged water stress and recovery on phenology, growth, and seed yield in Tunisian contrasting populations of Medicago truncatula and Medicago laciniata . After ample irrigation for 24 days, the plants of each population were divided into two lots: the first lot was irrigated at 100% field capacity (FC), and the second at only 45% FC. After 24 days of treatment, one lot of dehydrated plants was rewatered at 100% FC, while the other was maintained at 45% FC. Interspecific and intraspecific differences were found in phenological responses to water deficit. All growth parameters were more reduced in M. truncatula populations than in M. laciniata populations. The water shortage tolerance of M. laciniata populations was associated with a lower metabolic impairment of photosynthesis and maintenance of relatively higher leaf relative water content. Seed yield was also more reduced in M. truncatula populations compared with M. laciniata populations. In M. laciniata, seed mass was a compensation mechanism to sustain seed yield under drought conditions. Seed yield variation between populations under water deficit was explained mainly by variation in seed number per plant.


Author(s):  
Josana A. Langner ◽  
Alencar J. Zanon ◽  
Nereu A. Streck ◽  
Lia R. S. Reiniger ◽  
Marielen P. Kaufmann ◽  
...  

ABSTRACT The objective in this review was to discuss the importance of maize currently and the crucial role it may play in the future for food production in scenarios of water shortage, as well as the importance of conserving its landrace cultivars, which have a considerable portion of the reserve of genetic variability. Maize plants, when exposed to water deficit, may develop physiological, morphological, biochemical and anatomical adaptation mechanisms. With the aid of genetic improvement, characteristics that impart tolerance are fixed in plants through conventional methods. In this context, ‘Tuxpeño Sequia’ cultivars were developed in Mexico, while in Africa, one of the most important strategies was the development of ‘DT’ (Drought-tolerant) cultivars. In the United States, one of the most important processes was the development of PionerAquamax® hybrids, while in Brazil, it was the development of cultivars with the ‘Maya Latente’ gene. Through genetic transformation, the hybrid ‘MON 87460’ was developed. However, it should be mentioned that, for a cultivar to be well accepted by producers, besides having one or more adaptation characteristics, it must have a high grain yield. Biotechnological tools such as the use of molecular markers, genetic transformation, and modeling through bioinformatics, associated with conventional selection, will be fundamental to guarantee the advancement of water deficit tolerance in maize.


2019 ◽  
Vol 18 (6) ◽  
pp. 1257-1265 ◽  
Author(s):  
Muhammad Riaz ◽  
Jehanzeb Farooq ◽  
Saghir Ahmed ◽  
Muhammad Amin ◽  
Waqas Shafqat Chattha ◽  
...  

2006 ◽  
Vol 57 (2) ◽  
pp. 221 ◽  
Author(s):  
Qifu Ma ◽  
Sharon R. Niknam ◽  
David W. Turner

Canola (Brassica napus L.) is a major rotation crop but low yield has limited its adoption by farmers in the low-rainfall regions of southern Australia, where drought events can occur at any stage of crop development. We examined the effect of soil water deficit on osmotic adjustment and seed yield of canola and mustard (B. juncea L.) at the juvenile, elongation, anthesis, or seed-fill stage under glasshouse conditions and post-anthesis drought in the field. At the juvenile and elongation stages, leaves of both canola cv. Monty and mustard line 397-23-2-3-3 adjusted osmotically after exposure to water deficit. In comparison, only the mustard line expressed osmotic adjustment at anthesis and neither genotype adjusted at the seed-fill stage. A single drought event at the juvenile or elongation stage had little effect on growth and seed yield of either genotype, whereas water deficit at anthesis or seed-fill stage reduced seed yield of the canola cultivar by decreasing pod number, seeds per pod, and/or harvest index but largely did not affect the mustard line. In the field where rainfall diminished and plants were subjected to increasing water deficit during the reproductive stages, canola cv. Karoo and mustard line JN25 showed higher osmotic adjustment at anthesis and less yield reduction than the canola cv. Monty. This study suggests that yield sensitivity to water deficit was mainly due to its effect on concurrent formation of yield components, but could be modified by the physiological trait of osmotic adjustment.


Sign in / Sign up

Export Citation Format

Share Document