scholarly journals Evaluation of the yield and baking quality of winter wheat (Triticum aestivum L.) varieties in different cropyears

2013 ◽  
pp. 95-100
Author(s):  
Éva Szabó

We have investigated the effect of the cropyear, the genotype, the nutrient supply and their interactions on the yield and the quality parameters of three different winter wheat genotypes in three different cropyears. The most disadvantageous influence on the yield averages was caused by the moist weather of 2010, when yield results fell behind the mean of the two other examined years and the nutrient optimum was around low doses. The optimal cropyear turned out to be the ordinary 2011, the best yield results were experienced during this cropyear. Although the drier periods in 2012 decreased the yield values, the varieties could realize high yield maximum values. Considering the yield results, Genius turned out to be the best variety. In respect of the quality traits, 2010 turned out to be the best cropyear in case of all the three varieties. Despite the dry weather of the spring of 2012, the precipitation fell during flowering and ripening phases had positive impact on the grain-filling processes and contributed to the development of better quality. As a consequence of the significantly lower amount of precipitation during the generative phenological phases, the worst quality parameters were realized by the varieties in 2011.   In respect of crop year effect, 2010 was unfavourable for the amount of yield, but the most beneficial for the quality. 2011 was the most advantageous for the yield amounts but disadvantageous for the quality parameters. Although in 2012 extreme crop year effects were experienced after each other (dry and warm spring, moist and warm summer), the yield average and quality trait values were close to the yield averages of 2011 and quality parameters of 2010. Analyzing our results we can state that the average crop year was favourable rather for the yield. The appropriate amount of precipitation during the whole 2010 and that during the generative phenophases in 2012 favoured the development of good quality. Consequently, the appropriate amount of precipitation is essential for the development of good quality during the grain-filling period. The negative crop year effects were only compensated but not eliminated by the good nutrient supply. Genius achieved excellent yield averages but performed worse quality parameters than Mv Toldi, whose quality parameters were outstanding but the yield averages fell slightly behind those of Genius. Considering the yield results, the variety Genius turned out to be the best, while Mv Toldi was the best in quality.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7738
Author(s):  
Zhaoan Sun ◽  
Shuxia Wu ◽  
Biao Zhu ◽  
Yiwen Zhang ◽  
Roland Bol ◽  
...  

Information on the homogeneity and distribution of 13carbon (13C) and nitrogen (15N) labeling in winter wheat (Triticum aestivum L.) is limited. We conducted a dual labeling experiment to evaluate the variability of 13C and 15N enrichment in aboveground parts of labeled winter wheat plants. Labeling with 13C and 15N was performed on non-nitrogen fertilized (−N) and nitrogen fertilized (+N, 250 kg N ha−1) plants at the elongation and grain filling stages. Aboveground parts of wheat were destructively sampled at 28 days after labeling. As winter wheat growth progressed, δ13C values of wheat ears increased significantly, whereas those of leaves and stems decreased significantly. At the elongation stage, N addition tended to reduce the aboveground δ13C values through dilution of C uptake. At the two stages, upper (newly developed) leaves were more highly enriched with 13C compared with that of lower (aged) leaves. Variability between individual wheat plants and among pots at the grain filling stage was smaller than that at the elongation stage, especially for the −N treatment. Compared with those of 13C labeling, differences in 15N excess between aboveground components (leaves and stems) under 15N labeling conditions were much smaller. We conclude that non-N fertilization and labeling at the grain filling stage may produce more uniformly 13C-labeled wheat materials, whereas the materials were more highly 13C-enriched at the elongation stage, although the δ13C values were more variable. The 15N-enriched straw tissues via urea fertilization were more uniformly labeled at the grain filling stage compared with that at the elongation stage.


2013 ◽  
pp. 101-105
Author(s):  
Enikő Vári

The experiments were carried out at the Látókép experimental station of the University of Debrecen on chernozem soil in a long term winter wheat experiment in the season of 2011 and 2012 in triculture (pea-wheat-maize) and biculture (wheat-maize) at three fertilisation levels (control, N50+P35K40, N150+P105K120). Two different cropyears were compared (2011 and 2012). The research focused on the effects of forecrop and fertilisation on the Leaf Area Index, SPAD values and the amount of yield in two different cropyears. We wanted to find out how the examined parameters were affected by the cropyear and what the relationship was between these two parameters and the changes of the amount of yield. Examining the effects of growing doses of fertilizers applied, results showed that yields increased significantly in both rotations until the N150+PK level in 2011 and 2012. By comparing the two years, results show that in 2011 there was a greater difference in yields between the rotations (7742 kg ha-1 at N150+PK in the biculture and 9830 kg ha-1 at N150+PK in the triculture). Though wheat yields following peas were greater in 2012, results equalized later on at N150+PK levels (8109–8203 kg ha-1). Due to the favorable agrotechnical factors, the leaf and the effects of the treatments grown to a great extent in 2011, while in 2012 the differences between treatments were moderate. Until the N150+PK level, nitrogen fertilisation had a notable effect on the maximum amount of SPAD values (59.1 in the case of the biculture and 54.0 in the triculture). The highest SPAD values were measured at the end of May (during the time of flowering and grain filling) in the biculture. In the triculture, showed high SPAD values from the beginning. The same tendency could be observed in the 2012 cropyear, although increasing doses of fertilizers resulted in higher SPAD values until N150+PK level only from the second measurement. Maximum SPAD values were reached at the end of May in both crop rotation system


2000 ◽  
Vol 80 (4) ◽  
pp. 739-745 ◽  
Author(s):  
B. L. Duggan ◽  
D. R. Domitruk ◽  
D. B. Fowler

Crops produced in the semiarid environment of western Canada are subjected to variable and unpredictable periods of drought stress. The objective of this study was to determine the inter-relationships among yield components and grain yield of winter wheat (Triticum aestivum L) so that guidelines could be established for the production of cultivars with high yield potential and stability. Five hard red winter wheat genotypes were grown in 15 field trials conducted throughout Saskatchewan from 1989–1991. Although this study included genotypes with widely different yield potential and yield component arrangements, only small differences in grain yield occurred within trials under dryland conditions. High kernel number, through greater tillering, was shown to be an adaptation to low-stress conditions. The ability of winter wheat to produce large numbers of tillers was evident in the spring in all trials; however, this early season potential was not maintained due to extensive tiller die-back. Tiller die-back often meant that high yield potential genotypes became sink limiting with reduced ability to respond to subsequent improvements in growing season weather conditions. As tiller number increased under more favourable crop water conditions genetic limits in kernels spike−1 became more identified with yield potential. It is likely then, that tillering capacity per se is less important in winter wheat than the development of vigorous tillers with numerous large kernels spike−1. For example, the highest yielding genotype under dryland conditions was a breeding line, S86-808, which was able to maintain a greater sink capacity as a result of a higher number of larger kernels spike−1. It appears that without yield component compensation, a cultivar can be unresponsive to improved crop water conditions (stable) or it can have a high mean yield, but it cannot possess both characteristics. Key words: Triticum aestivum L., wheat, drought stress, kernel weight, kernel number, spike density, grain yield


2011 ◽  
Vol 52 (No. 8) ◽  
pp. 377-384 ◽  
Author(s):  
J. Haberle ◽  
P. Svoboda ◽  
J. Krejčová

The apparent uptake of mineral nitrogen (N<sub>min</sub>) from top- and subsoil layers during the growth of winter wheat (Triticum aestivum L.) was studied in Prague-Ruzyne on clay loam Chernozem soil in years 1996&ndash;2003. Two (N0,&nbsp;N1) and three treatments, unfertilized (N0), fertilized with 100 kg (N1) and 200 kg (N2) nitrogen per hectare were observed in years 1996&ndash;2000 and 2001&ndash;2003, respectively. The apparent uptake of nitrogen from soil layers was calculated from the changes of N<sub>min</sub> content between sampling terms. Most of available mineral N in the soil down to 90 cm was almost fully depleted between tillering and anthesis in treatment N0. The uptake from subsoil layers was delayed and it continued during the period of grain filling in fertilized treatments. Nitrogen fertilization reduced utilization of N from subsoil. The apparent uptake of N from the zone 50&ndash;120 cm ranged from 21 to 62&nbsp;kg&nbsp;N/ha in&nbsp;N0 and from 15 to 60 kg N/ha in N1 in years 1996&ndash;2000. In years 2001&ndash;2003 the corresponding values (50&ndash;130&nbsp;cm) were 24&ndash;104 kg, 43&ndash;130 kg and 29&ndash;94 kg N/ha in treatments N0, N1 and N2, respectively. The uptake from 120&nbsp;(130)&ndash;150 cm was around zero in a half of experimental years, and it reached at maximum 12 kg/ha in N0 in 1997. There was a strong linear relation between the amount of N<sub>min</sub> in spring and the depletion of nitrogen from the zone 50&ndash;120 (130) cm, R<sup>2 </sup>= 0.94, 0.91 and 0.99 in N0, N1 and N2, respectively.


1982 ◽  
Vol 62 (4) ◽  
pp. 831-838 ◽  
Author(s):  
R. C. JOHNSON ◽  
E. T. KANEMASU

Field experiments were conducted comparing yield and yield components of winter wheat (Triticum aestivum L.) grown under different soil water conditions. Soil water was controlled by excluding precipitation from a 150-m2 plot area with an automatic rain shelter. Treatment regimes were described according to their relative preanthesis/postanthesis soil water content as high/high (H/H), high/low (H/L), and low/high (L/H) in 1978–1979; an additional treatment, low/low (L/L) was added in 1979–1980. A neutron probe was used to periodically monitor soil water to the 150-cm depth in each regime. Plot yields ranged from 559 g/m2 in regime H/H (1978–1979) to 267 g/m2 in L/L (1979–1980) and were positively correlated with head number per square metre (r = 0.70) and kernel number per head (r = 0.79). Low preanthesis soil water reduced head number per square metre in both years. Regimes L/H and L/L in 1979–1980, which averaged the lowest preanthesis soil water of all regimes both years, had reduced kernels per spikelet compared to regimes with high preanthesis soil water. Increased kernel weight. associated with postanthesis irrigations, generally was not enough to compensate fully for fewer kernels per square metre associated with low preanthesis soil water. The results indicate that, if drought develops before grain filling in the spring, improved tiller survival and/or floret fertility could increase yields, even if some stress continued through grain filling. Under nonstress conditions, yield appears limited most by the amount of assimilate required to fill a high number of kernels per square metre.


2015 ◽  
Vol 95 (6) ◽  
pp. 1271-1276 ◽  
Author(s):  
D. F. Salmon ◽  
J. H. Helm ◽  
R. J. Graf ◽  
S. Albers ◽  
M. Aljarrah ◽  
...  

Salmon, D. F., Helm, J. H., Graf, R. J., Albers, S., Aljarrah, M., Xi, K., Oro, M., Lohr, S. and Bergen, C. 2015. Pintail general purpose winter wheat. Can. J. Plant Sci. 95: 1271–1276. Pintail is an awnless hard red winter wheat (Triticum aestivum L.) cultivar that was registered in 2012 and is eligible for grades of Canada Western General Purpose (CWGP) wheat. It was developed using wheat × maize-pollen doubled haploid techniques. Evaluated across western Canada from 2008 to 2010 relative to CDC Harrier, CDC Falcon and CDC Ptarmigan, Pintail expressed grain yield ranging from 98.6 to 105.8% of these CWGP wheat checks. Its area of greatest adaptation was in the parkland and semi-arid prairie regions of Alberta and western Saskatchewan, where cold tolerance is a primary concern. Pintail exhibited excellent winter survival, intermediate maturity, medium height and strong straw. Test weight was within the range of the checks, and kernel weight was lower than all of the checks. Pintail displayed moderate resistance to stripe rust, moderate susceptibility to stem and leaf rust, and susceptibility to common bunt and Fusarium head blight. The high yield and awnless spike of Pintail should make it particularly attractive in various livestock feed and forage applications.


1984 ◽  
Vol 64 (1) ◽  
pp. 207-209 ◽  
Author(s):  
H. G. NASS ◽  
R. B. WALTON ◽  
R. W. JONES ◽  
J. E. LANGILLE ◽  
J. S. BUBAR

Borden is a utility grade, medium-hard, red winter wheat (Triticum aestivum L. em. Thell.) with good winterhardiness and high yield in the Atlantic Provinces of Canada. Breeder seed will be maintained by the Agriculture Canada Research Station in Charlottetown, Prince Edward Island. Seed release of Borden is through SeCan Association.Key words: Winterhardiness, snow mold resistance, wheat (winter), cultivar description


1991 ◽  
Vol 71 (2) ◽  
pp. 543-546
Author(s):  
D. R. Sampson ◽  
R. G. Fulcher ◽  
W. L. Seaman ◽  
J. Fregeau-Reid

Harmil is a new soft white winter wheat (Triticum aestivum L.) cultivar well adapted to southwestern Ontario. It has high yield, medium height, strong straw, low grain and flour protein, and low 1000-grain weight. It is moderately susceptible to leaf and head diseases, but it is the only cultivar available for the area that is resistant to the two prevalent races of loose smut (Ustilago tritici). Key words: Triticum aestivum L., wheat (winter), soft white, cultivar description


2002 ◽  
Vol 82 (2) ◽  
pp. 421-423
Author(s):  
H. G. Nass ◽  
G. A. Atlin ◽  
C. A. Caldwell ◽  
D. F. Walker

AC Grandview, a hard red winter wheat (Triticum aestivum L.), is adapted to the Maritimes. It has shown high yield, good winter survival and moderate to good resistance to powdery mildew, septoria leaf and glume blotch and snow mold. Key words: Triticum aestivum, red winter wheat, yield, cultivar description


Sign in / Sign up

Export Citation Format

Share Document