scholarly journals The effect of sowing date and plant density of winter oilseed rape (Brassica napus var. napus f. biennis L.) population

2018 ◽  
pp. 213-215
Author(s):  
Éva Vincze ◽  
Péter Pepó

The experiment has been set up in the University of Debrecen Látókép Experimental Station in three different years (2014, 2015 and 2016), three different plant densities 200, 350 and 500 thousand ha-1, four replications of the same nutrient supply with using a line spacing of 45 cm. In the experiment, the fore crop was winter wheat in each year. The amount of weeds was observed five times in the last experimental year (2016/2017). In the three experimental years, the highest yield was harvested from the early sowing plot with the highest plant density. On the basis of the Pearson’s correlation analysis there was significant negative correlation (r=-0.583) between the effect of the annual year and yield of the hybrid.

2018 ◽  
pp. 205-208
Author(s):  
Ákos Tótin ◽  
Péter Pepó

Maize has high productivity and produces huge vegetative and generative phytomass, but this crop is very sensitive to agroecological (mainly to climatic, partly to pedological conditions) and agrotechnical circumstances. In Hungary, maize is grown on 1.1–1.2 million hectares, the national average yields vary between 4–7 t ha-1 depending on the year and the intensity of production technology. The longterm experiment was set up in 2015–2016 on chernozem soil in the Hajdúság (eastern Hungary). The maize research was set up on chernozem soil at the Látókép MÉK (Faculty of Agricultural and Food Sciences and Environmental Management) research area of the University of Debrecen. We examined the following commonly used hybrids of Hungary: SY ARIOSO (FAO 300), P9074 (FAO 310), P9486 (FAO 360), SY Octavius (FAO 400), GK Kenéz (FAO 410), DKC 4943 (FAO 410). The experiment was set up in three different plant densities. These were 60, 76, 90 thousand plant ha-1. The experiment was set up with three different sowing dates, early, average and late sowing. The yield was measured using a special plot harvester (Sampo Rosenlew 2010), measuring the weight of the harvested plot and also taking a sample from it. As a next step, we calculated the yield (t ha-1) of each plot at 14% of moisture content to compare them to each other. We evaluated the obtained data using Microsoft Excel 2015.


2005 ◽  
Vol 53 (1) ◽  
pp. 59-70 ◽  
Author(s):  
M. Sárvári

In order to enhance the adaptability and yield stability of maize, the effect of nutrient supply and plant density on yield was studied on a calcareous chernozem soil in Debrecen, while the relationship between sowing date and the grain moisture content at harvest was investigated on a typical meadow soil in Hajdúböszörmény. In the plant density experiment, the plant densities applied were 45, 60, 75 and 90 thousand plants/ha. The optimal fertilizer rates for the maize hybrids were: N 40-120, P2O5 25-75, K2O 30-90 kg ha-1. The application of NPK fertilizers in a wet year increased the yield by 40-50%. Hybrids with good chilling resistance at germination can be sown as early as 10 April, when the soil temperature reaches 8-10°C. There was a significant correlation between sowing date and the grain moisture content at harvest. When hybrids with good chilling resistance at germination were sown early, the grain moisture content at harvest was reduced by 5-10%. A plant density higher than the optimum reduces yield and yield stability. The optimal plant densities determined in the experiment were 60, 75 and 90 thousand plants/ha for two, three and one hybrid, respectively.


2012 ◽  
pp. 105-110
Author(s):  
Ádám Lente

In the crop season of 2010 (rainy year), we studied the effect of three agrotechnical factors (sowing time, fertilization, plant density) and four different genotypes on the agronomical characteristics of sweet corn on chernozem soil in the Hajdúság. The experiments were carried out at the Látókép Experimental Farm of the University of Debrecen. In the experiment, two sowing dates (27 April, 26 May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and four genotypes (Jumbo, Enterprise, Prelude, Box-R) were used at two plant densities (45 thousand plants ha-1, 65 thousand plants ha-1). The amount of precipitation in the season of 2010 was 184 mm higher, while the average temperature was 0.8 oC higher in the studied months than the average of 30 years. Weather was more favourable for sweet maize at the first sowing date, if we consider the yields, however, if we evaluate the agronomical data and yield elements (number of cobs, cob length and diameter, the number of kernel rows, the number of kernels per row) it can be stated that the size of the fertile cobs was greater at the second sowing date due to the lower number of cobs. The largest number of fertile cobs was harvested in the case of the hybrid Enterprise (72367.9 ha-1) in the higher plant density treatment (65 thousand ha-1) at the fertilization level of N120+PK when the first sowing date was applied. The largest cobs were harvested from the hybrid Box-R (cob weight with husks: 516.7 g, number of kernels in one row: 45.7) at the lower plant density (45 thousand plants ha-1) in the second sowing date treatment. Cob diameter and the number of kernel rows were the highest for the hybrid Prelude.


1999 ◽  
Vol 132 (2) ◽  
pp. 173-180 ◽  
Author(s):  
J. E. LEACH ◽  
H. J. STEVENSON ◽  
A. J. RAINBOW ◽  
L. A. MULLEN

The effects of plant density on the growth and yield of winter oilseed rape (Brassica napus) were examined in a series of five multifactorial experiments at Rothamsted Experimental Station between 1984 and 1989. Plant densities, manipulated by changing the seed rate and row spacing, or because of overwinter losses, ranged from 13·5 to 372 plants/m2. Normalized yields for the multifactorial plots increased with densities up to 50–60 plants/m2. In very high density plots in 1987/88, yield decreased as density increased >150 plants/m2. Plants grown at high density had fewer pod-bearing branches per plant but produced more branches/m2. Branch dry matter (DM) per plant was decreased by 42%, the number of fertile pods per plant and pod DM/plant by 37%. There was no effect of density on the number or DM of pods/m2. Over 74% of the fertile pods were carried on the terminal and uppermost branches of plants grown at high density in 1987/88 compared with only 34% in plants grown at low density in 1988/89. Seed DM/plant decreased with increase in density but seed size (1000-seed weight) increased. There was no effect of density on seed glucosinolate or oil contents.


2016 ◽  
pp. 105-110
Author(s):  
Ákos Tótin ◽  
Péter Pepó

The maize research was set up on chernozem soil at Látókép research area of the Centre for Agricultural Sciences University of Debrecen. We examined the following hybrids SY ARIOSO (FAO 300), P9486 (FAO360), DKC 4943 (FAO 410). The experience was set u pin three different plant density. These were 60, 76 and 90 thousand plant ha-1. The experience was set up in three different sawing date, early, average and late. The germination and growing dynamic measurements was measured in three hybrid, three sawing date, three plant density in four replication. well observed at the first sawing date (April 5) the soil was too cold therefore the germination was begins very slowly to be slowly increased. The second sowing time was the average (April 21) there the germination launch as soon as possible more rapid growth in the amount of heat. We experienced the most intense germination was in the case of the emergence late sowing date (May 5). Looking at the growth dynamics for the first two sawing date was side by side and almost equal to the maximum value. This is explained by the adaptive capacity of the maize to compensate for the sawing difference. For the third time, despite the delayed sawing the maize began to grow more dynamically than in previous sawing times due to the results of the initial good conditions it growth faster than halted in the second half of the season because of the high temperatures and lack of precipitation.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 801E-801
Author(s):  
Raul Leonel Grijalva-Contreras* ◽  
Ruben Macias-Duarte ◽  
Manuel de Jesus Valenzuela-Ruiz ◽  
Fabian Robles-Contreras

Production of high value crops in greenhouse in the Northwest of Mexico is an efficient way to achieve high yield, and high quality and the some time vegetables with less pesticide residue. The objective of this experiment was to evaluate the effects of three different plant densities (1.89, 2.50, and 3.78 plants/m2) on yield and fruit quality on tomatoes. This experiment was carried out in the Experimental Station (INIFAP-CIRNO) inside polyethylene greenhouse. In this Trial we used soil medium and the variety used was `Matrix'. The date seedling establishment was on 26 Jan. 2003. Plant density did have an effect on yield, but did not affect the fruit size. Yield per square meter had a linear response a plant density. The yield obtained were 21.8, 16.1 and 14.7 kg/m2 using 3.78, 2.50 and 1.89 plants/m2, respectively. Weight fruit varied from 200.4 to 247.6 g/fruit for all densities. Also the density not affected the fruit color. None of the treatments evaluated had problems of insect pest and disease.


Author(s):  
Oskars Balodis ◽  
Zinta Gaile

Abstract Crop yield per area is the product of plant density and productivity of an individual plant. Plant density and the time of winter oilseed rape sowing influences yield components (parameters of individual plant productivity), such as pod number per plant, seed number per pod, plant productivity, seed weight, and plant branching. The aim of this three-year (2008–2010) study was to investigate winter oilseed rape yield components depending on sowing date (five sowing dates) and sowing rate (four sowing rates for each variety) as initial cause of plant density at harvest for two type winter oilseed rape varieties (open pollinated ‘Californium’ and hybrid ‘Excalibur’). Field trials were carried out at the Research and Study Farm “Vecauce” of the Latvia University of Agriculture. Winter oilseed rape yield components (pod number per plant and seed number per pod, plant productivity (seed number per plant and plant productivity in g) as well as the number of primary branches per plant) were affected (p < 0.05) by sowing date and rate for both varieties. In general, no significant effect of sowing rate on 1000-seed weight was observed (p > 0.05), but sowing date influenced this component significantly (p < 0.05). A yield compensation mechanism was demonstrated by significant (p < 0.05) negative correlations between plant density at harvest and parameters of individual plant productivity.


2015 ◽  
Vol 33 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Oskars Balodis ◽  
Zinta Gaile

Abstract Winter oilseed rape (Brassica napus L.) significance among field crops is unchangeable in Latvia in the last decade. Plant density of winter oilseed rape during growth period is influenced by plant development in autumn and plant wintering. The aim of four year (2008 – 2011) research in the LLU Research and Study farm “Vecauce” was to investigate the influence of agronomical factors (sowing date, sowing rate, fungicide (metkonazole)) application and meteorological factors on two type (line, hybrid) winter oilseed rape varieties plant density changes from sowing till harvesting. Plant density in autumn, spring and during harvesting was influenced also by meteorological parameters such as air temperature and precipitation. On four year average, field germination was observed from 66% to 95%. Sowing date significantly (p<0.05) impacted plant survival during winters in all trial years for both varieties – ‘Californium’ and ‘Excalibur’, except for ‘Excalibur’ in the year 2008. Plant survival during winter for ‘Excalibur’ (hybrid) was higher compared to ‘Californium’ (line). Higher plant losses during winter were noted on the latest sowing date for both varieties. Winter oilseed rape plant survival was not significantly (p>0.05) influenced by fungicide as growth regulator application in autumn in any trial year. Influence of sowing date and sowing rate on the total plant density at harvest time was significant in all trial years (p<0.05) for both varieties. At higher sowing rate the plant loss during growing period was higher than at lower rates.


2016 ◽  
pp. 111-115
Author(s):  
Éva Vincze ◽  
Péter Pepó

We made plant physiology examinations in Arkaso winter oilseed rape hybrid substance: relative chlorophyll content (SPAD) and leaf area index (LAI) measurements. The experiment was set in University of Debrecen Agricultural Sciences Center at Látóképi Experimental Station in four replications, in two different sowing times (I. sowing date on 08/22/2014 and II. sowing date on 09/09/2014 sowing againhappened because of the incomplete germination in the second subtance 01/10/2014) Three different plant density 200, 350 and 500 thousand ha-1, under the same nutrient supply, 45 cm row spacing. The experiment was green crop of winter wheat. The relative chlorophyll content (SPAD) and leaf area index (LAI) measurements were made in seven different times. We measured the maximum value of chlorophyll content in the first sowing time at 500, and the second sowing time at 350 thousand ha-1 plant density. The measurement results proved that there was a linear relationship between the number of plants and the LAI. The maximum leaf area index values we measured in both the sowing time at 500 thousand ha-1 reached.


2012 ◽  
Vol 30 (2) ◽  
pp. 349-354 ◽  
Author(s):  
Wagner F da Mota ◽  
Rosimeire D Pereira ◽  
Gizeli de S Santos ◽  
Janiele Cássia B Vieira

The study aimed to evaluate the agronomic and economic performance of intercropping onion and lettuce on four plant densities of each species. The experiment was set up in completely randomized blocks, with four replications and treatments arranged in a 4 x 4 factorial. Treatments resulted from a combination of four (100, 80, 60, and 40% of recommended plant densities in monoculture) plant densities for both lettuce and onion. Intercropping did not affect the agronomic performance of onion or lettuce. Higher plant densities (100% for both vegetables) resulted in higher lettuce and onion yields. The best economic results were observed using (a) onion at 80% of plant density combined with lettuce at 40 and 100% and (b) onion at 100% and lettuce at all densities (40 to 100%).


Sign in / Sign up

Export Citation Format

Share Document