Industrial solar collector vs alternative solar collector: Environmental impact comparison by LCA perspective / Colector solar industrial versus colector solar alternativo: Comparação do impacto ambiental por perspectiva LCA

2021 ◽  
Vol 7 (7) ◽  
pp. 71355-71372
Author(s):  
Adrison Carvalho De Loreto ◽  
Adriane de Assis Lawisch Rodriguez ◽  
Allan Ramone de Araujo Scharnberg ◽  
Rafael Martins Da Silva ◽  
Diosnel Antonio Rodriguez Lopez ◽  
...  

Adequacy to sustainable development standards requires the use of methods and tools that enable the quantification and monitoring of environmental impacts related to production processes. As a subsidy to the potential reduction of impacts by solar collectors, this paper proposes an environmental evaluation, considering an alternative solar collector scenario to be compared with a commercial one, from the life cycle perspective. Using the Life Cycle Assessment (LCA) tool, the scenarios were evaluated using the SimaPro 8.5 software. The functional unit definition was defined with real system verification through the system preparation and operation in the laboratory, which is characterized as heating 26 L of water utilizing a thermosyphon system at a temperature greater than or equal to 38 ºC. Analyzing the LCA results, it was observed that the alternative system use offers environmental impacts reduction in all impact categories selected when compared to the commercial system. In addition, a sensitivity analysis was proposed considering a variation in polyester resin mass used in the alternative system. The simulation of changes in the resin resulted in even more decreases in the environmental impacts. Regarding thermal efficiency, the industrial system excelled in terms of absorption capacity and thermal reserve. Thus, the present paper using the analyzes proposed within the defined scope, allowed the comparison between the systems in such a way that it was possible to know whether the use of the alternative solar collector results in environmental advantages without losing thermal efficiency.  

2018 ◽  
Vol 188 ◽  
pp. 840-850 ◽  
Author(s):  
Zengwei Yuan ◽  
Xiao Pan ◽  
Tianming Chen ◽  
Xuewei Liu ◽  
You Zhang ◽  
...  

2019 ◽  
Vol 281 ◽  
pp. 03005 ◽  
Author(s):  
Nicolas Youssef ◽  
Andry Zaid Rabenantoandro ◽  
Zakaria Dakhli ◽  
Fadi Hage Chehade ◽  
Zoubeir Lafhaj

This article presents the environmental assessment of geopolymer bricks produced from clay and waste bricks. The life cycle approach is the method used in this research to qualify, identify and compare the environmental impacts of geopolymer bricks and fired bricks. The results reveal that the manufacturing process of geopolymer bricks implies for the same compressive strength of fired bricks, a reduction of CO2 emissions by up to 55% for clay-based geopolymer bricks. This research checks the environmental interests of the application of geopolymerization technology in the production of bricks.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2166 ◽  
Author(s):  
Sara Rajabi Hamedani ◽  
Tom Kuppens ◽  
Robert Malina ◽  
Enrico Bocci ◽  
Andrea Colantoni ◽  
...  

It is unclear whether the production of biochar is economically feasible. As a consequence, firms do not often invest in biochar production plants. However, biochar production and application might be desirable from a societal perspective as it might entail net environmental benefits. Hence, the aim of this work has been to assess and monetize the environmental impacts of biochar production systems so that the environmental aspects can be integrated with the economic and social ones later on to quantify the total return for society. Therefore, a life cycle analysis (LCA) has been performed for two potential biochar production systems in Belgium based on two different feedstocks: (i) willow and (ii) pig manure. First, the environmental impacts of the two biochar production systems are assessed from a life cycle perspective, assuming one ton of biochar as the functional unit. Therefore, LCA using SimaPro software has been performed both on the midpoint and endpoint level. Biochar production from willow achieves better results compared to biochar from pig manure for all environmental impact categories considered. In a second step, monetary valuation has been applied to the LCA results in order to weigh environmental benefits against environmental costs using the Ecotax, Ecovalue, and Stepwise approach. Consequently, sensitivity analysis investigates the impact of variation in NPK savings and byproducts of the biochar production process on monetized life cycle assessment results. As a result, it is suggested that biochar production from willow is preferred to biochar production from pig manure from an environmental point of view. In future research, those monetized environmental impacts will be integrated within existing techno-economic models that calculate the financial viability from an investor’s point of view, so that the total return for society can be quantified and the preferred biochar production system from a societal point of view can be identified.


Author(s):  
Bertha Maya Sopha ◽  
Setiowati Setiowati ◽  
Sholeh Ma’mun

Transportation sector contributes as the second largest polluter of the air pollution in Indonesia. Of the transportation sector, road transport has generated 70% of the air pollution, 81% of which is attributable to motorcycles. The motorcycles are currently accounting for 79% of the total motor vehicles. It is predicted that the number of motorcycles will continue to grow at an annual rate of 9-26%. However, due to little attention to the motorcycle’s environmental impacts, this present study, therefore, aims to assess and report the environmental impacts of using motorcycles based on life-cycle perspective. Using a functional unit of one passenger per kilometer (pkm), resource consumption and emissions through the entire life-cycle of a motorcycle were estimated. The foreground Life Cycle Inventory (LCI) was compiled through observation, interview, and secondary data, while the background LCI was based on ecoinvent data v.2.0. Results show that the environmental impacts of the chosen function unit constitute Abiotic Resource Depletion Potential (ADP) of 0.515 g Sb-eq., Global Warming Potential (GWP) of 176 g CO2-eq, Human Toxicity Potential (HTP) of 1.1 g 1.4-DCB-eq, and Acidification Potential (AP) of 0.544 g SO2-eq, respectively. Operation (usage stage) of the motorcycle has been the most contributor to GWP and AP, while manufacturing stage has been the most contributor to HTP. Potential interventions related to the manufacturing process, fuel, and usage of the motorcycle to reduce the environmental impacts are also discussed.


2015 ◽  
Vol 29 (8) ◽  
pp. 2581-2597 ◽  
Author(s):  
Anna Petit-Boix ◽  
David Sanjuan-Delmás ◽  
Sergio Chenel ◽  
Desirée Marín ◽  
Carles M. Gasol ◽  
...  

2008 ◽  
Vol 159 (2-3) ◽  
pp. 505-511 ◽  
Author(s):  
Luciano Morselli ◽  
Claudia De Robertis ◽  
Joseph Luzi ◽  
Fabrizio Passarini ◽  
Ivano Vassura

2015 ◽  
Vol 747 ◽  
pp. 282-285
Author(s):  
Amir Hamzah Sharaai ◽  
Mohd Zulfadhli Mat Zainol ◽  
Khairul Izzuddin bin Muhammad

Commercial conventional of poultry production at largest scale in this country show escalation year by year, together with high demand of poultry product in Malaysia market. The aim of this research was to identify environmental impact hotspots in the whole supply chain of quail meat production in Jasin, Melaka. At present, assessment of environmental impact of poultry production in Malaysia is lacking.Therefore, this study was conducted to evaluate the energy use and environmental impacts of quail meat production in Jasin,Melaka through life cycle assessment.A cradle-to-gate assessment including distribution stage was conducted based on the ISO 14040/14044 guidelines.Life cycle inventory data was collected from farmers and available literature. Life cycle impact assessment was conducted toidentify environmental impacts using the available method in theopenLCA software.Life cycle processes related to feed production, electricity and water were identified as the major hotspots for energy and they also showed the most significant contribution in GWP and acidication potential among the environmental impacts categories. Improving efficiency of energy and water consumption will reduce the environmental burden associated with quail meat production.Thus, at the end of this research, it will able to make industry player to understand and take into consideration the solutions in order to promote a green quail meat production.


Revista EIA ◽  
2019 ◽  
Vol 16 (31) ◽  
pp. 27-42 ◽  
Author(s):  
Carmen Alicia Parrado Moreno ◽  
Ricardo Esteba Ricardo Hernández ◽  
Héctor Iván Velásquez Arredondo ◽  
Sergio Hernando Lopera Castro ◽  
Christian Hasenstab --

Colombia is a major flower exporter of a wide variety of species, among which the chrysanthemum plays a major role due to its exporting volume and profitability on the international market. This study examines the major environmental impacts of the chrysanthemum supply chain through a life cycle assessment (LCA). One kg of stems export quality was used as the functional unit (FU). The study examines cut-flowers systems from raw material extraction to final product commercialization for two markets (London and Miami) and analyzes two agroecosystems: one certified system and one uncertified system. The transport phase to London resulted in more significant environmental impacts than the transport phase to Miami, and climate change (GWP100) category was significant in both cities, generating values of 9.10E+00 and 2.51E+00 kg CO2-eq*FU for London and Miami, respectively. Furthermore, when exclusively considering pre-export phases, the uncertified system was found to have a greater impact than the certified system with respect to fertilizer use (certified 1,448E-02 kg*FU, uncertified 2.23E-01 kg*FU) and pesticide use (certified 1.24 E-04 kg*FU, uncertified 2.24E-03 kg*FU). With respect to the crop management, eutrophication (EP) and acidification (AP) processes imposed the greatest level of environmental impact. Strategies that would significantly reduce the environmental impact of this supply chain are considered, including the use of shipping and a 50% reduction in fertilizer use.


Sign in / Sign up

Export Citation Format

Share Document