Radiation exposure of patients during 68Ga-DOTATOC PET/CT examinations

2009 ◽  
Vol 48 (05) ◽  
pp. 201-207 ◽  
Author(s):  
K. Zöphel ◽  
R. Freudenberg ◽  
L. Oehme ◽  
M. Andreeff ◽  
G. Wunderlich ◽  
...  

Summary Aim: Investigation of the biodistribution and calculation of dosimetry of Ga-68-DOTATOCfor patients imaged in the routine clinical setting for diagnosis or exclusion of neuroendocrine tumours. Patients, methods: Dynamic PET/CT-imaging (Biograph 16) was performed over 20 min in 14 patients (8 men, 6 women) after injection of (112 ± 22) MBq 68Ga-DOTATOC followed by whole body 3D-acquisition (8 bed positions, 3 or 4 min each) 30 min p.i. and 120 min p.i. Urinary tracer elimination was measured and blood activity was derived non-invasively from the blood pool of the heart. The relevant organs for dosimetry were spleen, kidneys, liver, adrenals, urinary bladder and pituitary gland. Dosimetry was performed using OLINDA/ EXM 1.0 software and specific organ uptake was expressed as standardized uptake values (SUVs). Results: Rapid physiological uptake of the radiotracer could be demonstrated in liver, spleen and kidneys, adrenals and pituitary gland (mean SUVs were 6, 20, 16, 10, and 4, respectively). Radiotracer elimination was exclusively via urine (16% of injected dose within 2h); no redistribution could be observed. The spleen and the kidneys received the highest radiation exposure (0.24 mSv/MBq, 0.22 mSv/MBq resp.), mean effective dose yielded 0.023 mSv/MBq. Conclusion: 68Ga-DOTATOC is used extensively for diagnosis of somatostatin receptor positive tumours because it has several advantages over the 111In-labelled ligand. The derived dosimetric values are lower than first approximations from the biological data of OctreoScan. The use of CT for transmission correction of the PET data delivers radiation exposure up to 1 mSv (low dose).


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Cihan Gündoğan ◽  
Yunus Güzel ◽  
Canan Can ◽  
İhsan Kaplan ◽  
Halil Kömek

Objective. The aim of this study is to investigate the uptake of 68Ga-FAPI-04 in normal tissues and calculate standardized uptake values (SUVs) for various organs in the body. Methods. A total of 49 patients who underwent 68Ga-FAPI-04 PET/CT were included in our study. The following organs were identified on CT images: brain, parotid, and submandibular glands, palatine tonsils, thyroid, lymph nodes (if present), breasts, lungs, thymus, left ventricle walls, mediastinal blood pool, vertebral bone marrow, liver, spleen, pancreas, stomach, small and large intestines, adrenal glands, kidneys, uterus, testes, and prostate. Median, minimum, and maximum values (max) and average (avg) values of standard uptake value (SUV) of tissues and organs were calculated. Results. The accumulation of 68Ga-FAPI in normal organs showed variations. The cerebral/cerebellar cortex exhibited no 68Ga-FAPI uptake, while the scalp showed low uptake. Low uptake was also observed in the lung parenchyma, esophagus, left ventricle walls, nipple, and glandular breast tissue. In the abdominopelvic area, the pancreas exhibited low uptake, which was higher in the tail region. Low uptake was observed in the renal cortex. Intense 68Ga-FAPI uptake was observed throughout the uterus, which was higher in the corpus. There was no uptake of 68Ga-FAPI in the bone cortex and medulla. Conclusion. We determined the physiological uptake and SUVmax of FAPI-04 in different tissues and organs and created a guide for researchers.



2005 ◽  
Vol 44 (S 01) ◽  
pp. S51-S57 ◽  
Author(s):  
T. Beyer ◽  
G. Brix

Summary:Clinical studies demonstrate a gain in diagnostic accuracy by employing combined PET/CT instead of separate CT and PET imaging. However, whole-body PET/CT examinations result in a comparatively high radiation burden to patients and thus require a proper justification and optimization to avoid repeated exposure or over-exposure of patients. This review article summarizes relevant data concerning radiation exposure of patients resulting from the different components of a combined PET/CT examination and presents different imaging strategies that can help to balance the diagnostic needs and the radiation protection requirements. In addition various dose reduction measures are discussed, some of which can be adopted from CT practice, while others mandate modifications to the existing hardand software of PET/CT systems.



2019 ◽  
Vol 12 (4) ◽  
pp. e227910
Author(s):  
Kanhaiyalal Agrawal ◽  
P Sai Sradha Patro ◽  
C Preetam

There is literature evidence showing utility of somatostatin receptor (SSTR) positron emission tomography-CT (PET-CT) imaging in differentiated thyroid cancer with Thyroglobulin Elevated and Negative Iodine Scan (TENIS). These patients are less benefited with I-131 therapy and surgery remains only curable option if disease could be localised. If surgery is not feasible, other therapeutic options are not promising. However, if these patients show strongly positive SSTR imaging, then possibility of peptide receptor radionuclide therapy may be explored. As SSTR PET-CT imaging is expensive and not widely available, Technetium-99m (Tc-99m) hydrazinonicotinyl-Tyr3-octreotide (HYNIC-TOC), which is a Single photon emission computed tomography (SPECT) tracer, can be used. We are documenting a case of raised serum thyroglobulin antibody and negative I-131 whole body scan with disease recurrence localised on Tc-99m HYNIC-TOC scan.



2016 ◽  
Vol 30 (10) ◽  
pp. 722-730 ◽  
Author(s):  
Naohisa Suzawa ◽  
Yasutaka Ichikawa ◽  
Masaki Ishida ◽  
Yoya Tomita ◽  
Ryohei Nakayama ◽  
...  


Medicine ◽  
2020 ◽  
Vol 99 (33) ◽  
pp. e20021
Author(s):  
Philippe Thuillier ◽  
David Bourhis ◽  
Nicolas Karakatsanis ◽  
Ulrike Schick ◽  
Jean Philippe Metges ◽  
...  


2018 ◽  
Vol 46 (8) ◽  
pp. 3138-3148 ◽  
Author(s):  
Fathinul Fikri Ahmad Saad ◽  
Mohd Hazeman Zakaria ◽  
Bahunu Appanna

Objectives 18F-choline is a useful tracer for detecting tumours with high lipogenesis. Knowledge of its biodistribution pattern is essential to recognise physiological variants. The aim of this study was to describe the physiologic distribution of 18F-choline and pitfalls in patients with breast cancer. Methods Twenty-one consecutive patients with breast cancer (10 premenopausal and 11 postmenopausal women; mean age, 52.82 ± 10.71 years) underwent 18F-choline positron emission tomography (PET)/computed tomography (CT) for staging. Whole-body PET/CT was acquired after 40 minutes of 18F-choline uptake. Acquired PET images were measured semiquantitatively. Results All patients showed pitfalls unrelated to breast cancer. These findings were predominantly caused by physiological glandular uptake in the liver, spleen, pancreas, bowels, axial skeleton (85%-100%), inflammation and benign changes (4.76%), appendicular skeleton (4.76%–19.049%), and site contamination (61.9%). In <1%, a concomitant metastatic neoplasm was found. The breast showed higher physiological uptake in premenopausal compared with postmenopausal woman (18F-choline maximum standardised uptake values [g/dL] of the right breast = 2.04 ± 0.404 vs 1.59 ± 0.97 and left breast = 2.00 ± 0.56 vs 1.93 ± 1.28, respectively). Conclusion 18F-choline uptake was higher in premenopausal women. Physiological 18F-choline uptake was observed in many sites, representing possible pathologies.



2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Michael Salim ◽  
Mohannad Samy Behairy ◽  
Elena Barengolts

Objective. Association of primary hyperparathyroidism (pHPT) with phosphaturic mesenchymal tumors (PMT) is rarely reported. This report entertains the hypothesis of the causal association of HPT with tumor-induced osteomalacia (TIO) and of the existence of HPT-PMT syndrome. Case Presentation. A 49-year-old man presented with fragility rib fractures, generalized bone pain, and muscle weakness worsening over the past 3 years. Initial tests demonstrated hypophosphatemia and high PTH. The diagnosis of pHPT was entertained, but parathyroid scan was negative. During a 2-year follow-up, the patient reported minimal improvement of symptoms after intermittent treatment with calcitriol and phosphate. Biochemical evaluation showed persistent hypophosphatemia with renal phosphate wasting, elevated FGF23, and osteopenia on DXA scan. TIO was suspected. Multiple MRIs and whole-body FDG-PET scans were inconclusive. The patient subsequently underwent 68Ga-DOTATATE PET-CT, which revealed a somatostatin receptor-positive lesion in the lung. The resected mass was confirmed as PMT. The patient had dramatically improved symptoms, normal phosphate, calcium, and FGF23. During follow-up over 3 years postsurgery, the patient had slowly rising calcium and persistently elevated PTH. Conclusion. The debate whether the patient had pHPT or tertiary HPT prompted literature review showing that aberrant genes including FGFR1, FGF1, fibronectin 1, and Klotho were mechanistically involved in the HPT-PMT association. This case highlights the pitfalls contributing to delayed diagnosis and treatment of TIO and hypothesizes the association between pHPT and PMT.



2019 ◽  
Vol 29 (4) ◽  
pp. 100
Author(s):  
Ahmed Ali Wabdan

The increasing interest of medical institutes in the development of imaging services to include the hybrid system [Positron Emission Tomography combined with Computed Tomography(PET/CT)], this system is acquiring explosive growth due to its ability to accurately detect and stage many types of cancer and follow the progress of treatments. An increasing demand for use of (18F-FDG PET) in oncology has been the main reason for its growth. The physical characteristics of positron emissions result in higher radiation risk for staff and growing use of PET/CT for diagnostic purposes increase radiation exposure. The objective of this study was to estimate the radiation exposure to the medical physicists, technicians and nurses working in three Egyptian nuclear medicine institutes under our investigations, based on the whole body collective dose measured by thermoluminescent dosimeters (TLDs) and the effective dose per study received by medical staff were measured by electronic pocked dosimeters and the finger doses by ring dosimeter during a period of six months. The (mean± SD) dose measured per PET/CT procedure were (2.45±0.137, 3.22±0.218 and 1.69±0.11) μSv for the medical physicist, technician and nurse respectively. The (mean± SD) dose measured per MBq of 18F-FDG were (7.35±0.43, 9.73±0.66 and 5.13±0.33) nSv/MBq for the medical physicist, technician and nurse respectively. The (mean± SD) finger dose measured per 18F-FDGPET/CT scans were (179.9±24.94, 8.82±2.912 and 24.15±4.164) μSv for the medical physicist, technician and nurse respectively.



Sign in / Sign up

Export Citation Format

Share Document