scholarly journals Metal-Organic Framework Membranes and Membrane Reactors: Versatile Separations and Intensified Processes

Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Yujie Ban ◽  
Na Cao ◽  
Weishen Yang

Metal-organic frameworks are an emerging and fascinating category of porous solids that can be self-assembled with metal-based cations linked by organic molecules. The unique features of MOFs in porosity (or surface areas), together with their diversity for chemical components and architectures, make MOFs attractive candidates in many applications. MOF membranes represent a long-term endeavor to convert MOF crystals in the lab to potentially industry-available commodities, which, as a promising alternative to distillation, provide a bright future for energy-efficient separation technologies closely related with chemicals, the environment, and energy. The membrane reactor shows a typical intensified process strategy by combining the catalytic reaction with the membrane separation in one unit. This review highlights the recent process of MOF-based membranes and the importance of MOF-based membrane reactors in relative intensified chemical processes.

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 537
Author(s):  
Tran-Van Phuc ◽  
Jin-Suk Chung ◽  
Seung-Hyun Hur

Pd, Cu, and Zn trimetallic metal-organic framework electrocatalysts (PCZs) based on benzene-1,3,5-tricarboxylic were synthesized using a simple solvothermal synthesis. The as-synthesized PCZ catalysts exhibited as much as 95% faradaic efficiency towards CO, with a high current density, low onset potential, and excellent long-term stability during the electrocatalytic reduction of CO2.


CrystEngComm ◽  
2015 ◽  
Vol 17 (2) ◽  
pp. 456-462 ◽  
Author(s):  
C. Tamames-Tabar ◽  
E. Imbuluzqueta ◽  
N. Guillou ◽  
C. Serre ◽  
S. R. Miller ◽  
...  

A novel biocompatible and bioactive zinc azelate metal–organic framework (BioMIL-5) was hydrothermally synthesized with interesting long-term antibacterial properties.


Author(s):  
Zhenpeng Yao ◽  
Benjamin Sanchez-Lengeling ◽  
N. Scott Bobbitt ◽  
Benjamin J. Bucior ◽  
Sai Govind Hari Kumar ◽  
...  

Reticular frameworks are crystalline porous materials that form <i>via</i> the self-assembly of molecular building blocks (<i>i.e.</i>, nodes and linkers) in different topologies. Many of them have high internal surface areas and other desirable properties for gas storage, separation, and other applications. The notable variety of the possible building blocks and the diverse ways they can be assembled endow reticular frameworks with a near-infinite combinatorial design space, making reticular chemistry both promising and challenging for prospective materials design. Here, we propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder (SmVAE) for the generative design of reticular materials with desired functions. We demonstrate the automated design process with a class of metal-organic framework (MOF) structures and the goal of separating CO<sub>2</sub> from natural gas or flue gas. Our model exhibits high fidelity in capturing structural features and reconstructing MOF structures. We show that the autoencoder has a promising optimization capability when jointly trained with multiple top adsorbent candidates identified for superior gas separation. MOFs discovered here are strongly competitive against some of the best-performing MOFs/zeolites ever reported. This platform lays the groundwork for the design of reticular frameworks for desired applications.


2020 ◽  
Author(s):  
Zhenpeng Yao ◽  
Benjamin Sanchez-Lengeling ◽  
N. Scott Bobbitt ◽  
Benjamin J. Bucior ◽  
Sai Govind Hari Kumar ◽  
...  

Reticular frameworks are crystalline porous materials that form <i>via</i> the self-assembly of molecular building blocks (<i>i.e.</i>, nodes and linkers) in different topologies. Many of them have high internal surface areas and other desirable properties for gas storage, separation, and other applications. The notable variety of the possible building blocks and the diverse ways they can be assembled endow reticular frameworks with a near-infinite combinatorial design space, making reticular chemistry both promising and challenging for prospective materials design. Here, we propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder (SmVAE) for the generative design of reticular materials with desired functions. We demonstrate the automated design process with a class of metal-organic framework (MOF) structures and the goal of separating CO<sub>2</sub> from natural gas or flue gas. Our model exhibits high fidelity in capturing structural features and reconstructing MOF structures. We show that the autoencoder has a promising optimization capability when jointly trained with multiple top adsorbent candidates identified for superior gas separation. MOFs discovered here are strongly competitive against some of the best-performing MOFs/zeolites ever reported. This platform lays the groundwork for the design of reticular frameworks for desired applications.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 414 ◽  
Author(s):  
Caibin Cai ◽  
Xiaotao Fan ◽  
Xiaolong Han ◽  
Jiding Li ◽  
Harsh Vardhan

In this paper, copper benzene-1,3,5-tricarboxylate (CuBTC) was incorporated into polyethylenglyol (PEG) to prepare a mixed matrix membrane (MMM) for pervaporation desulfurization. The characterization results showed that the prepared CuBTC particles had an ideal octahedral shape and micropores. The Cu2+ in CuBTC interacts with thiophene via π-complexation, thus enhancing the separation performance of the hybrid membranes. The effect of CuBTC content and the operating condition on the pervaporation performance of the MMMs was investigated. An optimal pervaporation separation performance was acquired with a permeation flux of 2.21 kg/(m2·h) and an enrichment factor of 8.79, which were increased by 100% and 39% compared with the pristine PEG membrane. Moreover, the CuBTC-filled PEG membrane showed a good stability in the long-term desulfurization under a high operating temperature of 75 °C for five days.


2019 ◽  
Vol 10 ◽  
pp. 1851-1859 ◽  
Author(s):  
Hana Bunzen ◽  
Andreas Kalytta-Mewes ◽  
Leo van Wüllen ◽  
Dirk Volkmer

In this work, a metal–organic framework (MOF), namely MFU-4, which is comprised of zinc cations and benzotriazolate ligands, was used to entrap SF6 gas molecules inside its pores, and thus a new scheme for long-term leakproof storage of dangerous gasses is demonstrated. The SF6 gas was introduced into the pores at an elevated gas pressure and temperature. Upon cooling down and release of the gas pressure, we discovered that the gas was well-trapped inside the pores and did not leak out – not even after two months of exposure to air at room temperature. The material was thoroughly analyzed before and after the loading as well as after given periods of time (1, 3, 7, 14 or 60 days) after the loading. The studies included powder X-ray diffraction measurements, thermogravimetric analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy, 19F nuclear magnetic resonance spectroscopy and computational simulations. In addition, the possibility to release the gas guest by applying elevated temperature, vacuum and acid-induced framework decomposition was also investigated. The controlled gas release using elevated temperature has the additional benefit that the host MOF can be reused for further gas capture cycles.


Sign in / Sign up

Export Citation Format

Share Document