scholarly journals Origin of High Efficiency and Long-Term Stability in Ionic Liquid Perovskite Photovoltaic

Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Lingfeng Chao ◽  
Tingting Niu ◽  
Hao Gu ◽  
Yingguo Yang ◽  
Qi Wei ◽  
...  

Environment-friendly protic amine carboxylic acid ionic liquids (ILs) as solvents is a significant breakthrough with respect to traditional highly coordinating and toxic solvents in achieving efficient and stable perovskite solar cells (PSCs) with a simple one-step air processing and without an antisolvent treatment approach. However, it remains mysterious for the improved efficiency and stability of PSCs without any passivation strategy. Here, we unambiguously demonstrate that the three functions of solvents, additive, and passivation are present for protic amine carboxylic acid ILs. We found that the ILs have the capability to dissolve a series of perovskite precursors, induce oriented crystallization, and chemically passivate the grain boundaries. This is attributed to the unique molecular structure of ILs with carbonyl and amine groups, allowing for strong interaction with perovskite precursors by forming C=O…Pb chelate bonds and N-H…I hydrogen bonds in both solution and film. This finding is generic in nature with extension to a wide range of IL-based perovskite optoelectronics.

2019 ◽  
Vol 9 (20) ◽  
pp. 4393 ◽  
Author(s):  
Jien Yang ◽  
Songhua Chen ◽  
Jinjin Xu ◽  
Qiong Zhang ◽  
Hairui Liu ◽  
...  

Perovskite solar cells (PSCs) employing organic-inorganic halide perovskite as active layers have attracted the interesting of many scientists since 2009. The power conversion efficiency (PCE) have pushed certified 25.2% in 2019 from initial 3.81% in 2009, which is much faster than that of any type of solar cell. In the process of optimization, many innovative approaches to improve the morphology of perovskite films were developed, aiming at elevate the power conversion efficiency of perovskite solar cells (PSCs) as well as long-term stability. In the context of PSCs research, the perovskite precursor solutions modified with different additives have been extensively studied, with remarkable progress in improving the whole performance. In this comprehensive review, we focus on the forces induced by additives between the cations and anions of perovskite precursor, such as hydrogen bonds, coordination or some by-product (e.g., mesophase), which will lead to form intermediate adduct phases and then can be converted into high quality films. A compact uniform perovskite films can not only upgrade the power conversion efficiency (PCE) of devices but also improve the stability of PSCs under ambient conditions. Therefore, strategies for the implementation of additives engineering in perovskites precursor solution will be critical for the future development of PSCs. How to manipulate the weak forces in the fabrication of perovskite film could help to further develop high-efficiency solar cells with long-term stability and enable the potential of future practical applications.


2019 ◽  
Vol 7 (33) ◽  
pp. 19554-19564 ◽  
Author(s):  
Hefeng Yuan ◽  
Shumin Wang ◽  
Xundi Gu ◽  
Bin Tang ◽  
Jinping Li ◽  
...  

A 3D core–shell-type FeNi@FeNiB electrocatalyst fabricated by environment-friendly solid-phase boronation exhibits remarkable catalytic activity and long-term stability for the OER in alkaline medium.


2018 ◽  
Vol 6 (17) ◽  
pp. 7903-7912 ◽  
Author(s):  
Chuanliang Chen ◽  
Yao Xu ◽  
Shaohang Wu ◽  
Shasha Zhang ◽  
Zhichun Yang ◽  
...  

Much less additive content of 0.5% CaI2 instead of 5% PbI2 was incorporated into the CH3NH3PbI3 film and a dense and surface-smooth morphology was obtained with much enlarged crystal grains. The champion PSC based on MAPbI3(CaI2)0.005 layer demonstrated a very high PCE of 19.3% with superior long-term stability.


2017 ◽  
Vol 5 (4) ◽  
pp. 1374-1379 ◽  
Author(s):  
Yue Sun ◽  
Yihui Wu ◽  
Xiang Fang ◽  
Linjun Xu ◽  
Zhijie Ma ◽  
...  

Perovskite solar cells with superior tolerance to humidity (85–95% RH) and long-term stability have been achieved via adding a certain amount of a cost-effective and available water soluble additive, polyvinyl alcohol (PVA).


Nanoscale ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 3053-3059 ◽  
Author(s):  
Long Zhou ◽  
Jingjing Chang ◽  
Ziye Liu ◽  
Xu Sun ◽  
Zhenhua Lin ◽  
...  

Efficient perovskite/PCBM heterojunction is formed in one-step for perovskite solar cells with high performance and long-term stability.


Author(s):  
S.V. Borshch ◽  
◽  
R.M. Vil’fand ◽  
D.B. Kiktev ◽  
V.M. Khan ◽  
...  

The paper presents the summary and results of long-term and multi-faceted experience of international scientific and technical cooperation of Hydrometeorological Center of Russia in the field of hydrometeorology and environmental monitoring within the framework of WMO programs, which indicates its high efficiency in performing a wide range of works at a high scientific and technical level. Keywords: World Meteorological Organization, major WMO programs, representatives of Hydrometeorological Center of Russia in WMO


Author(s):  
Zhihai Liu ◽  
Lei Wang ◽  
Chongyang Xu ◽  
Xiaoyin Xie

Recently, Ruddlesden–Popper two-dimensional (2D) perovskite solar cells (PSCs) have been intensively studied, owing to their high power conversion efficiency (PCE) and excellent long-term stability. In this work, we fabricated electron-transport-layer-free...


Solar Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 28-34
Author(s):  
Mahmoud Samadpour ◽  
Mahsa Heydari ◽  
Mahdi Mohammadi ◽  
Parisa Parand ◽  
Nima Taghavinia

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexander D. Taylor ◽  
Qing Sun ◽  
Katelyn P. Goetz ◽  
Qingzhi An ◽  
Tim Schramm ◽  
...  

AbstractDeposition of perovskite films by antisolvent engineering is a highly common method employed in perovskite photovoltaics research. Herein, we report on a general method that allows for the fabrication of highly efficient perovskite solar cells by any antisolvent via manipulation of the antisolvent application rate. Through detailed structural, compositional, and microstructural characterization of perovskite layers fabricated by 14 different antisolvents, we identify two key factors that influence the quality of the perovskite layer: the solubility of the organic precursors in the antisolvent and its miscibility with the host solvent(s) of the perovskite precursor solution, which combine to produce rate-dependent behavior during the antisolvent application step. Leveraging this, we produce devices with power conversion efficiencies (PCEs) that exceed 21% using a wide range of antisolvents. Moreover, we demonstrate that employing the optimal antisolvent application procedure allows for highly efficient solar cells to be fabricated from a broad range of precursor stoichiometries.


Sign in / Sign up

Export Citation Format

Share Document