scholarly journals Protective Role of Trans-chalcone against the Progression from Simple Steatosis to Non-alcoholic Steatohepatitis: Regulation of miR-122, 21, 34a, and 451

Author(s):  
Elham Karimi-Sales ◽  
Sajad Jeddi ◽  
Abbas Ebrahimi-Kalan ◽  
Mohammad Reza Alipour

Purpose: Non-alcoholic steatohepatitis (NASH) is an inflammatory disorder and an aggressive form of fatty liver disease. Certain microRNAs, including miR-122, 21, 34a, and 451, are involved in the transition from steatosis to NASH. This study examined how trans-chalcone (the core of chalcone derivatives) affects NAFLD progression by regulating miRNAs. Methods: Male rats were divided into three groups (n = 7/group) as follows: control, rats were gavaged with 10% tween 80 (for two weeks); NASH, rats were gavaged with a high-fat liquid diet (HFD; for six weeks) and 10% tween 80 (for two weeks); NASH + Chal, rats were gavaged with the HFD (for six weeks) and trans-chalcone (for two weeks). Hepatic expression levels of miR-122, 21, 34a, and 451 were determined. Results: trans-Chalcone reversed histological abnormalities, reduced liver injury markers, and attenuated insulin resistance in HFD-fed rats. In the liver, HFD-induced NASH increased the expression level of miR-34a and decreased expression levels of miR-122, 21, and 451. However, trans-chalcone inhibited HFD-induced changes in expression levels of these miRNAs. Conclusion: trans-Chalcone could inhibit the transition from steatosis to NASH through the modulation of miR-122, 21, 34a, and 451 expression levels in the liver.

2021 ◽  
pp. 096032712199190
Author(s):  
AA Dar ◽  
A Fehaid ◽  
S Alkhatani ◽  
S Alarifi ◽  
WS Alqahtani ◽  
...  

Methotrexate (MTX) is frequently used drug in treatment of cancer and autoimmune diseases. Unfortunately, MTX has many side effects including the hepato-renal toxicity. In this study, we hypothesized that Luteolin (Lut) exhibits protective effect against the MTX-induced hepato-renal toxicity. In order to investigate our hypothesis, the experiment was designed to examine the effect of exposure of male rats to MTX (20 mg/kg, i.p., at day 9) alone or together with Lut (50 mg/kg, oral for 14 days) compared to the control rats (received saline). The findings demonstrated that MTX treatment induced significant increases in the liver and kidney functions markers in serum samples including Aspartate transaminase (AST), Alanine transaminase (ALT), creatinine, urea and uric acid. MTX also mediated an oxidative stress expressed by elevated malondialdehyde (MDA) level and decreased level of reduced glutathione (GSH), antioxidant enzyme activities, and downregulation of the Nrf2 gene expression as an antioxidant trigger. Moreover, the inflammatory markers (NF-κB, TNF-α, and IL-1β) were significantly elevated upon MTX treatment. In addition, MTX showed an apoptotic response mediated by elevating the pro-apoptotic (Bax) and lowering the anti-apoptotic (Bcl-2) proteins. All of these changes were confirmed by the observed alterations in the histopathological examination of the hepatic and renal tissues. Lut exposure significantly reversed all the MTX-induced changes in the measured parameters suggesting its potential protective role against the MTX-induced toxicity. Finally, our findings concluded the antioxidative, anti-inflammatory and anti-apoptotic effects of Lut as a mechanism of its protective role against the MTX-induced hepato-renal toxicity in rats.


2021 ◽  
Author(s):  
Amany Mohamed Shalaby ◽  
Adel Mohamed Aboregela ◽  
Mohamed Ali Alabiad ◽  
Mona Tayssir Sadek

Abstract Diabetes mellitus (DM) represents a widespread metabolic disease with a well-known neurotoxicity in both central and peripheral nervous systems. Oxymatrine is a traditional Chinese herbal medicine that has various pharmacological activities including; anti-oxidant, anti-apoptotic and anti-inflammatory potentials. The present work aimed to study the impact of diabetes mellitus on the cerebellar cortex of adult male albino rat and to evaluate the potential protective role of oxymatrine using different histological methods. Fifty-five adult male rats were randomly divided into three groups: group I served as control, group II was given oxymatrine (80 mg/kg/day) orally for 8 weeks and group III was given a single dose of streptozotocin (50mg/kg) intaperitoneally to induce diabetes. Then diabetic rats were subdivided into two subgroups: subgroup IIIa that received no additional treatment and subgroup IIIb that received oxymatrine similar to group II. The diabetic group revealed numerous changes in the Purkinje cell layer in the form of multilayer arrangement of Purkinje cells, shrunken cells with deeply stained nuclei as well as focal loss of the Purkinje cells. A significant increment in GFAP and synaptophysin expression was reported. Transmission electron microscopy showed irregularity and splitting of myelin sheaths in the molecular layer, dark shrunken Purkinje cells with ill-defined nuclei, dilated Golgi saccules and dense granule cells with irregular nuclear outlines in the granular layer. In contrast, these changes were less evident in diabetic rats that received oxymatrine. In conclusion, Oxymatrine could protect the cerebellar cortex against changes induced by DM.


2010 ◽  
Vol 84 (5) ◽  
pp. 613-617 ◽  
Author(s):  
Deepmala Joshi ◽  
Deepak Kumar Mittal ◽  
Sadhana Shrivastava ◽  
Sangeeta Shukla
Keyword(s):  

2004 ◽  
Vol 286 (1) ◽  
pp. G60-G67 ◽  
Author(s):  
Yoshiya Ito ◽  
Edward R. Abril ◽  
Nancy W. Bethea ◽  
Robert S. McCuskey

Nitric oxide (NO) is suggested to play a role in liver injury elicited by acetaminophen (APAP). Hepatic microcirculatory dysfunction also is reported to contribute to the development of the injury. As a result, the role of NO in hepatic microcirculatory alterations in response to APAP was examined in mice by in vivo microscopy. A selective inducible NO synthase (iNOS) inhibitor,l- N6-(1-iminoethyl)-lysine (l-NIL), or a nonselective NOS inhibitor, NG-nitro-l-arginine methyl ester (l-NAME), was intraperitoneally administered to animals 10 min before APAP gavage. l-NIL suppressed raised alanine aminotransferase (ALT) values 6 h after APAP, whereas l-NAME increased those 1.7-fold. Increased ALT levels were associated with hepatic expression of iNOS. l-NIL, but not l-NAME, reduced the expression. APAP caused a reduction (20%) in the numbers of perfused sinusoids. l-NIL restored the sinusoidal perfusion, but l-NAME was ineffective. APAP increased the area occupied by infiltrated erythrocytes into the extrasinusoidal space. l-NIL tended to minimize this infiltration, whereas l-NAME further enhanced it. APAP caused an increase (1.5-fold) in Kupffer cell phagocytic activity. This activity in response to APAP was blunted by l-NIL, whereas l-NAME further elevated it. l-NIL suppressed APAP-induced decreases in hepatic glutathione levels. These results suggest that NO derived from iNOS contributes to APAP-induced parenchymal cell injury and hepatic microcirculatory disturbances. l-NIL exerts preventive effects on the liver injury partly by inhibiting APAP bioactivation. In contrast, NO derived from constitutive isoforms of NOS exerts a protective role in liver microcirculation against APAP intoxication and thereby minimizes liver injury.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Zhengyu Jiang ◽  
Yan Meng ◽  
Lulong Bo ◽  
Changli Wang ◽  
Jinjun Bian ◽  
...  

Septic liver injury/failure that is mainly characterized by oxidative stress, inflammation, and apoptosis led to a great part of terminal liver pathology with limited effective intervention. Here, we used a lipopolysaccharide (LPS) stimulation model to simulate the septic liver injury and investigated the effect of sophocarpine on LPS-stimulated mice with endotoxemia. We found that sophocarpine increases the survival rate of mice and attenuates the LPS-induced liver injury, which is indicated by pathology and serum liver enzymes. Further research found that sophocarpine ameliorated hepatic oxidative stress indicators (H2O2, O2∙−, and NO) and enhanced the expression of antioxidant molecules such as superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). In addition, sophocarpine also attenuated regional and systematic inflammation and further reduced apoptosis of hepatocytes. Mechanistic evidence was also investigated in the present study as sophocarpine inhibited hepatic expression of the CYP2E/Nrf2 pathway during oxidative stress, inactivated p38/JNK cascade and NF-κB pathway, and, meanwhile, suppressed PI3K/AKT signaling that reduced apoptosis. Conclusively, the present study unveiled the protective role of sophocarpine in LPS-stimulated oxidative reaction, inflammation, and apoptosis by suppressing the CYP2E/Nrf2/ROS as well as PI3K/AKT pathways, suggesting its promising role in attenuating inflammation and liver injury of septic endotoxemia.


Sign in / Sign up

Export Citation Format

Share Document