scholarly journals Sulfoquinovosyl oleoyl palmitoyl glycerol (SQDG) and hexane extract of Sargassum plagyophylum prevent depression induced by dexamethasone or stress in mice

2021 ◽  
Vol 10 (2) ◽  
pp. 262-268
Author(s):  
Afsaneh Yegdaneh ◽  
Azadeh Mesripour ◽  
Marjan Keyvani

Introduction: M Glucocorticoids and stress are a leading cause of depression by dysregulation of hypothalamic hypophyseal adrenal axis. Sargassum plagyophylum hexane extract (HxE) has proven antidepressant-like effects in mice. We aimed at evaluating HxE and sulfoquinovosyl oleoyl palmitoyl glycerol (SQDG) isolated compound antidepressant effects following dexamethasone (Dex) or water avoidance stress (WAS) induced depression in mice. Methods: The HxE was prepared and fractionated by different chromatography methods to isolate active compounds. Depression was induced in male mice by Dex single dose or by four days of WAS. After the locomotor test, depression was assessed by measuring the immobility time during the forced swimming test (FST) and sucrose preference test. Results: 6-Deoxy-6-sulpho-α-D-glucopyranosyl-1,2-O-diacyl-glycerol was isolated and elucidated from the seaweed. The manipulations did not cause important changes in animals’ locomotor activity. During FST, immobility time increased dramatically by Dex (193 ± 13 s vs control 109 ± 7 s) or WAS (189 ± 13 s vs sham 86 ± 14 s), that indicated depression. HxE 40 mg/kg reduced the immobility time when it was administered with Dex (110 ± 28 s, P < 0.01 vs Dex alone) or together with WAS (86 ± 11 s, P < 0.001 vs WAS). SQDG 40 mg/kg reduced the immobility time when co-administered with Dex (22 ± 9 s, P < 0.001 vs Dex alone) and when it was administered along with WAS (68 ± 16 s, P < 0.001 vs WAS). The results of the sucrose preference test were in line with FST results as sucrose preference below 65% was considered for anhedonia. Conclusion: SQDG and probably the steroid content in S. plagyophylum HxE prevented depression in mice; thus, they should be considered for further clinical evaluations.

2015 ◽  
Vol 30 (4) ◽  
pp. 504-510 ◽  
Author(s):  
G.-F. Zhang ◽  
W.-X. Liu ◽  
L.-L. Qiu ◽  
J. Guo ◽  
X.-M. Wang ◽  
...  

AbstractCurrent available antidepressants exhibit low remission rate with a long response lag time. Growing evidence has demonstrated acute sub-anesthetic dose of ketamine exerts rapid, robust, and lasting antidepressant effects. However, a long term use of ketamine tends to elicit its adverse reactions. The present study aimed to investigate the antidepressant-like effects of intermittent and consecutive administrations of ketamine on chronic unpredictable mild stress (CUMS) rats, and to determine whether ketamine can redeem the time lag for treatment response of classic antidepressants. The behavioral responses were assessed by the sucrose preference test, forced swimming test, and open field test. In the first stage of experiments, all the four treatment regimens of ketamine (10 mg/kg ip, once daily for 3 or 7 consecutive days, or once every 7 or 3 days, in a total 21 days) showed robust antidepressant-like effects, with no significant influence on locomotor activity and stereotype behavior in the CUMS rats. The intermittent administration regimens produced longer antidepressant-like effects than the consecutive administration regimens and the administration every 7 days presented similar antidepressant-like effects with less administration times compared with the administration every 3 days. In the second stage of experiments, the combination of ketamine (10 mg/kg ip, once every 7 days) and citalopram (20 mg/kg po, once daily) for 21 days caused more rapid and sustained antidepressant-like effects than citalopram administered alone. In summary, repeated sub-anesthestic doses of ketamine can redeem the time lag for the antidepressant-like effects of citalopram, suggesting the combination of ketamine and classic antidepressants is a promising regimen for depression with quick onset time and stable and lasting effects.


Author(s):  
Jing Xia ◽  
Li Gu ◽  
Yitong Guo ◽  
Hongyan Feng ◽  
Shuhan Chen ◽  
...  

Capsaicin (CAP) is an active ingredient in chili pepper that is frequently consumed. It exerts various pharmacological activities, and also has potential effects on mental illness. However, its mechanism of antidepressant effects is still unclear. Based on the emerging perspective of the gut-brain axis, we investigated the effects of dietary CAP on gut microbes in mice with depression-like behaviors induced by lipopolysaccharide (LPS). C57BL/6J male mice (four weeks old) were given specific feed (standard laboratory chow or laboratory chow plus 0.005% CAP) for 4 months. During the last five days, LPS (0.052/0.104/0.208/0.415/0.83 mg/kg, 5-day) was injected intraperitoneally to induce depression. Behavioral indicators and serum parameters were measured, and gut microbiota were identified by sequencing analysis of the 16S gene. This study showed that dietary CAP improved depressive-like behavior (sucrose preference test, forced swimming test, tail suspension test) and levels of 5-HT and TNF-α in serum of LPS-induced mice with depression-like behaviors. In addition, CAP could recover abnormal changes in depression-related microbiota. Especially at the genus level, CAP enhanced the variations in relative abundance of certain pivotal microorganisms like Ruminococcus, Prevotella, Allobaculum, Sutterella, and Oscillospira. Correlation analysis revealed changes in microbiota composition that was closely related to depressive behavior, 5-HT and TNF-α levels. These results suggested that dietary CAP can regulate the structure and number of gut microbiota and play a major role in the prevention of depression.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yujin Choi ◽  
Yunna Kim ◽  
Hwa-Young Lee ◽  
Seung-Hun Cho

Tetragonia tetragonioides, which is a halophyte and grows widely in Asian-Pacific regions, has been used for the treatment of digestive disorders in traditional oriental medicine. This study examined the potential antidepressant effect of Tetragonia tetragonioides in an astroglial degeneration model of depression, which was established based on the postmortem study of depressive patients’ brain presenting diminished astrocytes in the prefrontal cortex. C57BL/6 male mice were exposed to glial ablation in the prefrontal cortex by the administration of the gliotoxin, L-alpha-aminoadipic acid (L-AAA) to induce depression. Tetragonia tetragonioides at doses of 100 mg/kg and 300 mg/kg, imipramine at a dose of 15 mg/kg, and distilled water were orally administrated to mice for 18 days. Behavioral tests including the open field test (OFT), sucrose preference test (SPT), forced swimming test (FST), and tail suspension test (TST) were carried out after 2 days of L-AAA injection. The expression levels of GFAP and NeuN in the prefrontal cortex were determined by immunohistochemistry. Mice subjected to glial ablation in the prefrontal cortex displayed decreased sucrose consumption in SPT and increased immobility time in FST and TST. Treatment with imipramine and Tetragonia tetragonioides remarkably ameliorated the behavioral despair induced by L-AAA. In addition, immunohistochemistry analysis showed that treatment with Tetragonia tetragonioides significantly restored the glial loss as indicated by the elevated GFAP expression level. These findings suggest that Tetragonia tetragonioides exerts an antidepressant effect through the restoration of glial loss under conditions of depression and can be a candidate for an antidepressant agent.


2021 ◽  
Vol 22 (14) ◽  
pp. 7611
Author(s):  
Zachary Yu ◽  
Ya-Tin Lin ◽  
Jin-Chung Chen

The precise neural mechanisms underlying the pathogenesis of depression are largely unknown, though stress-induced brain inflammation and serotonergic plasticity are thought to be centrally involved. Moreover, we previously demonstrated that neuropeptide FF receptor 2 (NPFFR2) overexpression provokes depressive-like behaviors in mice. Here, we assess whether NPFFR2 is involved in priming of depressive-like behaviors and downregulation of serotonergic 1A receptor (5HT1AR) after lipopolysaccharide (LPS) treatment. The forced swimming test (FST) and sucrose preference test (SPT) were used to quantify depressive-like phenotypes in wild-type (WT) and NPFFR2-knockout (KO) mice. A single dose of LPS (i.p. 1 mg/kg) readily caused increases in toll-like receptor 4 and tumor necrosis factor-α along with decreases in 5-HT1AR mRNA in the ventral hippocampus of WT mice. Furthermore, LPS treatment of WT mice increased immobility time in FST and decreased sucrose preference in SPT. In contrast, none of these effects were observed in NPFFR2-KO mice. While WT mice injected with lentiviral 5-HT1AR shRNA in the ventral hippocampus displayed an unaltered response after LPS challenge, LPS-challenged NPFFR2-KO mice displayed a profound decrease in sucrose preference when pretreated with 5-HT1AR shRNA. Taken together, these results suggest that NPFFR2 modulates LPS-induced depressive-like behavioral phenotypes by downregulating 5HT1AR in the ventral hippocampus.


Author(s):  
Alisha Abbas ◽  
Narendra Kumar ◽  
Sarvesh Singh ◽  
Rahul Kumar ◽  
Akhlaque Ahmad ◽  
...  

Background: Depression was seen to be associated with an increased level of inflammatory biomarkers along with the disturbance in the monoamine neurotransmitter system. Current therapies are mostly focussed on the neurotransmitters imbalance but due to increasing cases of treatment failure there is a need to shift our treatment focus to other potential therapies. This study aimed to evaluate the preventive role of aspirin and metformin in stress induced model of depression in wistar rats.Methods: Fifty four wistar rats were randomly divided into nine groups as normal control, experimental control, aspirin (30 mg/kg, 60 mg/kg), metformin (50 mg/kg, 100 mg/kg), two combination groups and imipramine (15 mg/kg). Depression model was created by the induction of chronic unpredictable mild stress (CUMS) for consecutive 28 days. Behavioural assessment was done by evaluating immobility time in forced swim test (FST) and sucrose preference ratio (SPR) in sucrose preference test. The data were analysed by analysis of variance (ANOVA) test using SPSS software. P<0.05 was considered to be statistically significant.Results: The CUMS led to an increase in immobility time and decrease in SPR. Aspirin and Metformin alone and their combinations showed statistically significant response in preventing the immobility time to increase (p<0.001) and SPR to decrease (p<0.001). However the response of Aspirin was comparable with Imipramine but the response of Metformin was not as significant as of Imipramine (p>0.05).Conclusions: Aspirin and metformin might have a potential role in the prevention of depression.


2021 ◽  
Vol 18 (3) ◽  
pp. 603-609
Author(s):  
Yanhong Yi ◽  
Jing Li ◽  
Weian Chen

Purpose: To investigate the effect and mechanism of curcumin on depression in mice Methods: Mice were subjected to chronic unpredictable mild stress (CUMS), and behavioural changes were evaluated by sucrose preference test (SPT) and forced swimming test (FST). CUMS-treated mice received curcumin at a concentration of 50, 100, or 200 mg/kg. The level of MiR-124 was measured by real-time polymerase chain reaction (RT-PCR). Brain-derived neurotrophic factor (BDNF) levels were evaluated by western blotting. Results: CUMS induced depressive behaviour in mice, with increase in miR-124 and decrease in BDNF. Curcumin inhibited miR-124 expression and promoted BDNF in a dose-dependent manner in CUMS-treated mice. Brain-derived neurotrophic factor was the direct target of miR-124, decreasing the transcription of BDNF, but this was reversed by curcumin in vitro. MicroRNA-124 overexpression aggravated CUMS-induced depressive symptoms including loss of appetite, less sucrose consumption, shorter swimming time, and longer immobility time (p < 0.001). The effects were attenuated by curcumin. Conclusion: Curcumin alleviates CUMS-induced depressive behaviour by regulating miR-124/BDNF, suggesting that curcumin may a viable treatment option for depression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yafei Ji ◽  
Jie Luo ◽  
Jiuseng Zeng ◽  
Yang Fang ◽  
Rong Liu ◽  
...  

Numerous studies have revealed that oxidative stress is closely associated with the occurrence and development of depression. Xiaoyao Pills (XYW) are included in the Chinese Pharmacopoeia and are frequently used for treating anxiety and depression by smoothing the liver, strengthening the spleen, and nourishing the blood. However, the antidepressant effects of XYW have not yet been thoroughly investigated. The objective of our study was to investigate the antidepressant-like effects of XYW and the underlying molecular mechanism in the olfactory bulbectomized (OB) rat model of depression using the open field test (OFT), sucrose preference test (SPT), splash test (ST), and novelty suppressed feeding test (NSFT). Results showed that XYW (0.93 and 1.86 g·kg−1) significantly alleviated depression-like behaviors in rats, which was indicated by increased sucrose preference in the SPT, prolonged grooming time in the ST, decreased horizontal movement in the OFT, and shorter feeding latency in the NSFT. In addition, XYW treatment dramatically reversed the reduced activity of superoxide dismutase and the decreased level of glutathione, while also lowering levels of malondialdehyde, an inflammatory mediator (nitric oxide), and pro-inflammatory cytokines (interleukin-6 and 1β) in the serum and cortex of OB rats. Mechanistically, XYW induced marked upregulation of mRNA and protein expression levels of NFE2L2, KEAP1, GPX3, HMOX1, SOD1, NQO1, OGG1, PIK3CA, p-AKT1/AKT1, NTRK2, and BDNF, and downregulation of ROS in the cortex and hippocampus via the activation of the NFE2L2/KEAP1, PIK3CA/AKT1, and NTRK2/BDNF pathways. These findings suggest that XYW exert antidepressant-like effects in OB rats with depression-like symptoms, and these effects are mediated by the alleviation of oxidative stress and the enhancement of neuroprotective effects through the activation of the PIK3CA-AKT1-NFE2L2/BDNF signaling pathways.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 857
Author(s):  
Rongrong Li ◽  
Chiyuan Ma ◽  
Yue Xiong ◽  
Huashan Zhao ◽  
Yali Yang ◽  
...  

Depression affects the reproductive axis at the hypothalamus and pituitary levels, which has a significant impact on female fertility. It has been reported that G protein-coupled receptor 1 (Gpr1) mRNA is expressed in both the hypothalamus and ovaries. However, it is unclear whether there is a relationship between Gpr1 and depression, and its role in ovarian function is unknown. Here, the expression of Gpr1 was recorded in the hypothalamus of normal female mice, and co-localized with gonadotrophin-releasing hormone (GnRH) and corticotropin-releasing factor (CRF). We established a depression mouse model to evaluate the antidepressant effect of G5, an antagonistic peptide of Gpr1. The results show that an intraperitoneal injection of G5 improves depressant–like behaviors remarkably, including increased sucrose intake in the sucrose preference test and decreased immobility time in the forced swimming tests. Moreover, G5 treatment increased the release of reproductive hormone and the expression of ovarian gene caused by depression. Together, our findings reveal a link between depression and reproductive diseases through Gpr1 signaling, and suggest antagonistic peptide of Gpr1 as a potential therapeutic application for hormone-modulated depression in women.


Sign in / Sign up

Export Citation Format

Share Document