scholarly journals Three-Dimensional Assessment of the Knowledge Production System: Region-City-Organization

2021 ◽  
Vol 19 (2) ◽  
pp. pp118-132
Author(s):  
Andrey S. Mikhaylov ◽  
Anna A. Mikhaylova ◽  
Dmitry V. Hvaley

Conceptualization of the region as an integral territorial system of knowledge production has formed a widely used research strategy for innovation studies within regional boundaries. Regional level studies are supported by detailed innovation statistics, which is unavailable for smaller administrative-territorial units, such as municipalities or settlements. The development of spatial scientometrics gave impetus for a new round of research on knowledge and innovation geography with a closer approximation in the context of cities and urban agglomerations. The scope of recent research also includes individual organizations that generate new knowledge or innovation. Despite the topic prominence, the entire array of studies is fragmented, and connections between different levels are not established: region – city – organization. Whereas this is critically important for the implementation of an effective innovation policy. In this regard, in this study, we test the hypothesis that the aggregate data obscures a wide variety of knowledge nodes, which are represented by a dominant knowledge centre. In the case of the region, such centres are often the largest cities, and in the case of cities – the largest organizations. The research design is focused on assessing the knowledge production at a multiscale level – organization, city and region, using the method of spatial scientometrics. The example of the Russian Federation illustrates well the territorial and institutional diversity in the distribution of knowledge production centres of different levels due to its great length and complexity of the structure of the national innovation system. This fact determines the high degree of heterogeneity of the Russian innovation space at the interregional, intercity and inter-organizational levels. The research results show a strong correlation between the knowledge profiles of regions and their primary knowledge-generating cities (KGCs). In cases of a strong central-peripheral structure of the regional knowledge production system, the regional profile completely coincides with the profile of its primary KGC. The knowledge capacity of second-tier cities remains hidden. At the city level, the identified trend is exacerbated. The absence of a pronounced leader among knowledge-intensive organizations (KIOs) against organizational diversity leads to a strong blur of the effectiveness of the knowledge production capabilities of a city. The example of Khabarovsk shows that the research profile of a city in a given situation may not repeat the most productive KIO, but, on the contrary, a weak one. Thus, the three-dimensional region-city-organization approach captures local specifics and organizational diversity, encompassing the entire set of elements of a regional knowledge production system. The study concludes with recommendations for a knowledge management policy at a tiered level.

2008 ◽  
Vol 73 (6-7) ◽  
pp. 873-897 ◽  
Author(s):  
Vladimír Špirko ◽  
Ota Bludský ◽  
Wolfgang P. Kraemer

The adiabatic three-dimensional potential energy surface and the corresponding dipole moment surface describing the ground electronic state of HN2+ (Χ1Σ+) are calculated at different levels of ab initio theory. The calculations cover the entire bound part of the potential up to its lowest dissociation channel including the isomerization barrier. Energies of all bound vibrational and low-lying ro-vibrational levels are determined in a fully variational procedure using the Suttcliffe-Tennyson Hamiltonian for triatomic molecules. They are in close agreement with the available experimental numbers. From the dipole moment function effective dipoles and transition moments are obtained for all the calculated vibrational and ro-vibrational states. Statistical tools such as the density of states or the nearest-neighbor level spacing distribution (NNSD) are applied to describe and analyse general patterns and characteristics of the energy and dipole results calculated for the massively large number of states of the strongly bound HN2+ ion and its deuterated isotopomer.


2021 ◽  
Vol 11 (10) ◽  
pp. 4620
Author(s):  
Niki Kousi ◽  
Christos Gkournelos ◽  
Sotiris Aivaliotis ◽  
Konstantinos Lotsaris ◽  
Angelos Christos Bavelos ◽  
...  

This paper discusses a digital twin-based approach for designing and redesigning flexible assembly systems. The digital twin allows modeling the parameters of the production system at different levels including assembly process, production station, and line level. The approach allows dynamically updating the digital twin in runtime, synthesizing data from multiple 2D–3D sensors in order to have up-to-date information about the actual production process. The model integrates both geometrical information and semantics. The model is used in combination with an artificial intelligence logic in order to derive alternative configurations of the production system. The overall approach is discussed with the help of a case study coming from the automotive industry. The case study introduces a production system integrating humans and autonomous mobile dual arm workers.


Author(s):  
MAHMUT ÇELIK ◽  
HAKAN GÜRÜN ◽  
ULAŞ ÇAYDAŞ

In this study, the effects of experimental parameters on average surface roughness and material removal rate (MRR) were experimentally investigated by machining of AISI 304 stainless steel plates by magnetic abrasive finishing (MAF) method. In the study in which three different abrasive types were used (Al2O3, B4C, SiC), the abrasive grain size was changed in two different levels (50 and 80[Formula: see text][Formula: see text]m), while the machining time was changed in three different levels (30, 45, 60[Formula: see text]min). Surface roughness values of finished surfaces were measured by using three-dimensional (3D) optical surface profilometer and surface topographies were created. MRRs were measured with the help of precision scales. The abrasive particles’ condition before and after the MAF process was examined and compared using a scanning electron microscope. As a result of the study, the surface roughness values of plates were reduced from 0.106[Formula: see text][Formula: see text]m to 0.028[Formula: see text][Formula: see text]m. It was determined that the best parameters in terms of average surface roughness were 60[Formula: see text]min machining time with 50[Formula: see text][Formula: see text]m B4C abrasives, while the best result in terms of MRR was taken in 30[Formula: see text]min with 50[Formula: see text][Formula: see text]m SiC abrasives.


2018 ◽  
Vol 17 ◽  
pp. 153601211880272 ◽  
Author(s):  
Liliya M. Yamaleyeva ◽  
K. Bridget Brosnihan ◽  
Lane M. Smith ◽  
Yao Sun

Placental oxygenation varies throughout pregnancy. The detection of early changes in placental oxygenation as pregnancy progresses is important for early identification of preeclampsia or other complications. This invited commentary discusses a recent preclinical study on the application of 3-dimensional photoacoustic imaging (PAI) for assessment of regional variations in placental oxygenation and longitudinal analysis of differences in placental oxygenation throughout normal pregnancy and pregnancy associated with hypertension or placental insufficiency in mice. Three-dimensional PAI more accurately reflects oxygen saturation, hemoglobin concentrations, and changes in oxygen saturation in whole placenta compared to 2-dimensional imaging. These studies suggest that PAI is a sensitive tool to detect different levels of oxygen saturation in the placental and fetal vasculature in pathologic and normal pregnancy in mice.


2016 ◽  
Author(s):  
Michal Gallay ◽  
Zdenko Hochmuth ◽  
Ján Kaňuk ◽  
Jaroslav Hofierka

Abstract. The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organised vertically in different levels. Studying such complex environments traditionally requires tedious mapping, however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterisation and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional scalar fields which is sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a three-dimensional entity therefore a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3D computer graphics which can be applied to study other 3-D geomorphological forms


2019 ◽  
Vol 16 (151) ◽  
pp. 20180714 ◽  
Author(s):  
Elsa M. Quicazan-Rubio ◽  
Johan L. van Leeuwen ◽  
Klaas van Manen ◽  
Mike Fleuren ◽  
Bart J. A. Pollux ◽  
...  

Swimming performance of pregnant live-bearing fish is presumably constrained by the additional drag associated with the reproductive burden. Yet, it is still unclear how and to what extent the reproductive investment affects body drag of the females. We examined the effect of different levels of reproductive investment on body drag. The biggest measured increase in body volume due to pregnancy was about 43%, linked to a wetted area increase of about 16% and 69% for the frontal area. We printed three-dimensional models of live-bearing fish in a straight body posture representing different reproductive allocation (RA) levels. We measured the drag and visualized the flow around these models in a flow tunnel at different speeds. Drag grew in a power fashion with speed and exponentially with the increase of RA, thus drag penalty for becoming thicker was relatively low for low speeds compared to high ones. We show that the drag increase with increasing RA was most probably due to bigger regions of flow separation behind the enlarged belly. We suggest that the rising drag penalty with an increasing RA, possibly together with pregnancy-related negative effects on muscle- and abdominal bending performance, will reduce the maximum swimming speed.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1792 ◽  
Author(s):  
Xiong Wan ◽  
Kai Zhu ◽  
Yanjin Xu ◽  
Baoshuai Han ◽  
Tao Jing

It is well-known that cell morphology plays a vital role in the mechanical properties of the closed-cell aluminum foam. In this work, a three-dimensional (3D) realistic structure was obtained by using the synchrotron X-ray micro-tomography technique and then translated into a numerical model for a further finite-element simulation. In order to investigate the early compressive deformation in the closed-cell aluminum foam, we chose three different strain levels, namely, 0.2% (initiation of plastic strain), 2.8% (propagation of plastic strain band), and 6% (formation of collapse band) to discuss the evolution forms of plastic strain concentration by simulation. We found that the curvature, anisotropy, and distribution of cell volume of adjacent cells played a vital role in the initiation of plastic strain. Furthermore, the phenomenon that plastic strain band propagated along the direction aligned 45° with respect to the orientation of the compression was also investigated in the propagation of the plastic strain band and formation of the collapse band. Finally, the comparison between experimental results and simulation results was performed to illustrate the early location of these three different levels in the whole compressive deformation.


Author(s):  
Spyros A. Karamanos ◽  
Charis Eleftheriadis

The present paper examines the denting deformation of offshore pipelines and tubular members (D/t≤50) subjected to lateral (transverse) quasi-static loading in the presence of uniform external pressure. Particular emphasis is given on pressure effects on the ultimate lateral load of tubes and on their energy absorption capacity. Pipe segments are modeled with shell finite elements, accounting for geometric and material nonlinearities, and give very good predictions compared with test data from non-pressurized pipes. Lateral loading between two rigid plates, a two-dimensional case, is examined first. Three-dimensional case, are also analyzed, where the load is applied either through a pair of opposite wedge-shaped denting tools or a single spherical denting tool. Load-deflection curves for different levels of external pressure are presented, which indicate that pressure has significant influence on pipe response and strength. Finally, simplified analytical models are proposed for the two-dimensional and three-dimensional load configurations, which yield closed-form expressions, compare fairly well with the finite element results and illustrate some important features of pipeline response in a clear and elegant manner.


Sign in / Sign up

Export Citation Format

Share Document