scholarly journals The North-East Greenland project 1988–1990

1991 ◽  
Vol 152 ◽  
pp. 24-29
Author(s):  
N Henriksen

The third and last season of the North-East Greenland project between latitudes 75° and 78°N was completed in July and August 1990. The main aims of the studies in North-East Greenland include compilation of a 1:500 000 geological map sheet covering the area between Grandjean Fjord (75°N) and Jökelbugten (78°N), and regional geological investigations to provide an understanding of the general geology of the region. A preliminary evaluation of the potential for hydrocarbons and mineral resources was included in the project, and took the form of investigations of the onshore remnants of Phanerozoic sedimentary basins (Stemmerik & Piasecki, 1990) and a geochemical exploration reconnaissance.

1990 ◽  
Vol 148 ◽  
pp. 16-20
Author(s):  
N Henriksen

A three-year field mapping programme was initiated in 1988 aiming at regional geological studies and geological mapping in North-East Greenland between latitudes 75° and 78°N. This region encompasses relatively little known parts of the Caledonian fold belt and the overlying post-Caledonian sequences, which lie north of the better known regions of central East Greenland (Henriksen, 1989). Major aims of the programme include compilation a 1:500 000 geological map, and an understanding of the general geology of the region.


1969 ◽  
Vol 26 ◽  
pp. 61-64 ◽  
Author(s):  
Michael B.W. Fyhn ◽  
Thorkild M. Rasmussen ◽  
Trine Dahl-Jensen ◽  
Willy L. Weng ◽  
Jørgen A. Bojesen-Koefoed ◽  
...  

The East Greenland margin consists of a number of sedimentary basins, platforms and structural highs (Figs 1, 2). Due to the challenges imposed by the Arctic climate, the region is in an early stage of exploration, and knowledge of the geology and petroleum potential of the margin is limited. However, the significant prospectivity of the conjugated European North Atlantic margin and the nature of the North- East Greenland onshore geology prompt for future offshore exploration. The US Geological Survey thus highlighted the North-East Greenland margin in their latest assessment of the Arctic region (Gautier et al. 2011). With a mean estimate of undiscovered recoverable oil, gas, and natural gas liquids of approximately 31 billion barrels of oil equivalents, the US Geological Survey ranked the North-East Greenland margin fourth in the entire Arctic region, only superseded by known producing petroleum provinces.


Author(s):  
Yvette Dewolf ◽  
Charles Pomerol

The Parisian basin is a geographical entity whose limits are easily defined by the Armorican massif, the Massif Central, the Vosges, the Ardennes, and the English Channel. Both Burgundy and Poitou are transitional areas. The Paris basin, a more restrictive term, corresponds according to some geologists (Cavelier and Lorenz 1987) essentially to the Tertiary ‘part’ of the basin: the Île de France and surroundings. The relief of the Parisian basin results from two sets of factors: tectonic and climatic. These have operated from Triassic times until the Pleistocene and have led to the development of a geographically simple whole in its gross structure and form. However, within this framework individual natural regions (or geotypes) may be recognized. The Parisian basin is frequently considered as a model for sedimentary basins, displaying as it does, a classic framework of sedimentary formations (Pomerol 1978; Cavelier and Pomerol 1979; Cavelier et al. 1979; Pomerol and Feugueur 1986; Debrand-Passard 1995). This is evident from the geological map of France, and on the related cross-section. Indeed, the section shows the superposition of strata in a subsiding area, with a maximal thickness (3,200 m) in the Brie country. This arrangement illustrates the geometric definition of the Parisian basin, an intracratonic basin, 600 km in diameter, limited towards the west by the Armorican massif, the south by the Massif Central, the east by the Vosges, and the north-east by the Ardenno-Rhenan massif. The following geological overview is based upon the previously mentioned studies and the geological time scale. However, the analysis of the evolution of these sedimentary areas from Triassic to Neogene shows that the area named as the ‘Parisian basin’ was included in successive palaeogeographies (which were strongly influenced by adjacent seas) and overflowed across the basement regions that now act as the limits of the basin. The chronological order of the geological formations involved in the evolution of the Parisian basin according to Robin et al. (2000) is used in the following text. During the Triassic, the future Parisian basin was a gulf of the German Sea. This sea transgressed westwards and reached the meridian of Paris during the Keuper.


2009 ◽  
Vol 18 ◽  
pp. 1-126 ◽  
Author(s):  
Niels Henriksen ◽  
A.K. Higgins ◽  
Feiko Kalsbeek ◽  
T. Christopher R. Pulvertaft

The geological development of Greenland spans a period of nearly 4 Ga, from Eoarchaean to the Quaternary. Greenland is the largest island on Earth with a total area of 2 166 000 km2, but only c. 410 000 km2 are exposed bedrock, the remaining part being covered by a major ice sheet (the Inland Ice) reaching over 3 km in thickness. The adjacent offshore areas underlain by continental crust have an area of c. 825 000 km2. Greenland is dominated by crystalline rocks of the Precambrian shield, which formed during a succession of Archaean and Palaeoproterozoic orogenic events and stabilised as a part of the Laurentian shield about 1600 Ma ago. The shield area can be divided into three distinct types of basement provinces: (1) Archaean rocks (3200–2600 Ma old, with local older units up to> 3800 Ma) that were almost unaffected by Proterozoic or later orogenic activity; (2) Archaean terrains reworked during the Palaeoproterozoic around 1900–1750 Ma ago; and (3) terrains mainly composed of juvenile Palaeoproterozoic rocks (2000–1750 Ma in age). Subsequent geological developments mainly took place along the margins of the shield. During the Proterozoic and throughout the Phanerozoic major sedimentary basins formed, notably in North and North-East Greenland, in which sedimentary successions locally reaching 18 km in thickness were deposited. Palaeozoic orogenic activity affected parts of these successions in the Ellesmerian fold belt of North Greenland and the East Greenland Caledonides; the latter also incorporates reworked Precambrian crystalline basement complexes. Late Palaeozoic and Mesozoic sedimentary basins developed along the continent–ocean margins in North, East and West Greenland and are now preserved both onshore and offshore. Their development was closely related to continental break-up with formation of rift basins. Initial rifting in East Greenland in latest Devonian to earliest Carboniferous time and succeeding phases culminated with the opening of the North Atlantic Ocean in the late Paleocene. Sea-floor spreading was accompanied by extrusion of Palaeogene (early Tertiary) plateau basalts in both central West and central–southern East Greenland. During the Quaternary Greenland was almost completely covered by ice, and the present day Inland Ice is a relic from the Pleistocene ice ages. Vast amounts of glacially eroded detritus were deposited on the continental shelves around Greenland. Mineral exploitation in Greenland has so far encompassed cryolite, lead-zinc, gold, olivine and coal. Current prospecting activities in Greenland are concentrated on gold, base metals, platinum group elements, molybdenum, iron ore, diamonds and lead-zinc. Hydrocarbon potential is confined to the major Phanerozoic sedimentary basins, notably the large basins offshore North-East and West Greenland. While reserves of oil or gas have yet to be found, geophysical data combined with discoveries of oil seeps onshore have revealed a considerable potential for offshore oil and gas.


Author(s):  
Niels Henriksen ◽  
A.K. Higgins ◽  
Feiko Kalsbeek ◽  
T. Christopher R. Pulvertaft

NOTE: This monograph was published in a former series of GEUS Bulletin. Please use the original series name when citing this monograph, for example: Henriksen, N., Higgins, A., Kalsbeek, F., & Pulvertaft, T. C. R. (2000). Greenland from Archaean to Quaternary. Descriptive text to the Geological map of Greenland, 1:2 500 000. Geology of Greenland Survey Bulletin, 185, 2-93. https://doi.org/10.34194/ggub.v185.5197 _______________ The geological development of Greenland spans a period of nearly 4 Ga, from the earliest Archaean to the Quaternary. Greenland is the largest island in the world with a total area of 2 166 000 km2, but only c. 410 000 km2 are exposed bedrock, the remaining part being covered by an inland ice cap reaching over 3 km in thickness. The adjacent offshore areas underlain by continental crust have an area of c. 825 000 km2. Greenland is dominated by crystalline rocks of the Precambrian shield, which formed during a succession of Archaean and early Proterozoic orogenic events and which stabilised as a part of the Laurentian shield about 1600 Ma ago. The shield area can be divided into three distinct types of basement provinces: (1) Archaean rocks (3100-2600 Ma old, with local older units) almost unaffected by Proterozoic or later orogenic activity; (2) Archaean terraines reworked during the early Proterozoic around 1850 Ma ago; and (3) terraines mainly composed of juvenile early Proterozoic rocks (2000-1750 Ma old). Subsequent geological developments mainly took place along the margins of the shield. During the later Proterozoic and throughout the Phanerozoic major sedimentary basins formed, notably in North and North-East Greenland, and in places accumulated sedimentary successions which reached 10-15 km in thickness. Palaeozoic orogenic activity affected parts of these successions in the Ellesmerian fold belt of North Greenland and the East Greenland Caledonides; the latter also incorporates reworked Precambrian crystalline basement complexes. Late Palaeozoic and Mesozoic sedimentary basins developed along the continent-ocean margins in North, East and West Greenland and are now preserved both onshore and offshore. Their development was closely related to continental break-up with formation of rift basins. Initial rifting in East Greenland in latest Devonian to earliest Carboniferous time and succeeding phases culminated with the opening of the North Atlantic in the late Paleocene. Sea-floor spreading was accompanied by extrusion of Tertiary plateau basalts in both central West and central and southern East Greenland. During the Quaternary Greenland was almost completely covered by ice sheets, and the present Inland Ice is a relic of the Pleistocene ice ages. Vast amounts of glacially eroded detritus were deposited on the continental shelves offshore Greenland. Mineral exploitation in Greenland has so far mainly been limited to one cryolite mine, two lead-zinc deposits and one coal deposit. Current prospecting activities in Greenland are concentrated on the gold, diamond and lead-zinc potential. The hydrocarbon potential is confined to the major Phanerozoic sedimentary basins, notably the large basins offshore East and West Greenland. While proven reserves of oil or gas have yet to be found, geophysical data combined with extrapolations from onshore studies have revealed a considerable potential for offshore oil and gas. The description of the map has been prepared with the needs of the professional geologist in mind; it requires a knowledge of geological principles but not previous knowledge of Greenland geology. Throughout the text reference is made to the key numbers in the map legend indicated in square brackets [ ] representing geological units (see Legend explanation, p. 79), while a Place names register (p. 83) and an Index (p. 87) include place names, geological topics, stratigraphic terms and units found in the legend. The extensive reference list is intended as a key to the most relevant information sources.


Author(s):  
Jesper Kresten Nielsen ◽  
Mikael Pedersen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Pedersen, M. (1998). Hydrothermal activity in the Upper Permian Ravnefjeld Formation of central East Greenland – a study of sulphide morphotypes. Geology of Greenland Survey Bulletin, 180, 81-87. https://doi.org/10.34194/ggub.v180.5090 _______________ Bituminous shales of the Ravnefjeld Formation were deposited in the subsiding East Greenland basin during the Upper Permian. The shales are exposed from Jameson Land in the south (71°N; Fig. 1) to Clavering Ø in the north (74°20′N) and have attracted considerable attention due to their high potential as hydrocarbon source rocks (Piasecki & Stemmerik 1991; Scholle et al. 1991; Christiansen et al. 1992, 1993a, b). Furthermore, enrichment of lead, zinc and copper has been known in the Ravnefjeld Formation on Wegener Halvø since 1968 (Lehnert-Thiel 1968; Fig. 1). This mineralisation was assumed to be of primary or early diagenetic origin due to similarities with the central European Kupferschiefer (Harpøth et al. 1986). Later studies, however, suggested base metal mineralisation in the immediately underlying carbonate reefs to be Tertiary in age (Stemmerik 1991). Due to geographical coincidence between the two types of mineralisation, a common history is a likely assumption, but a timing paradox exists. A part of the TUPOLAR project on the ‘Resources of the sedimentary basins of North and East Greenland’ has been dedicated to re-investigation of the mineralisation in the Ravnefjeld Formation in order to determine the genesis of the mineralisation and whether or not primary or early diagenetic base metal enrichment has taken place on Wegener Halvø, possibly in relation to an early period of hydrothermal activity. One approach to this is to study the various sulphides in the Ravnefjeld Formation; this is carried out in close co-operation with a current Ph.D. project at the University of Copenhagen, Denmark. Diagenetically formed pyrite is a common constituent of marine shales and the study of pyrite morphotypes has previously been successful from thermalli immature parts of elucidating depositional environment and thermal effects in the Alum Shale Formation of Scandinavia (Nielsen 1996; Nielsen et al. 1998). The present paper describes the preliminary results of a similar study on pyrite from thermally immature parts of the Ravnefjeld Formation which, combined with the study of textures of base metal sulphides in the Wegener Halvø area (Fig. 1), may provide an important step in the evaluation of the presence or absence of early thermal activity on (or below) the Upper Permian sea floor.


Author(s):  
Jesper Kresten Nielsen ◽  
Nils-Martin Hanken

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Hanken, N.-M. (2002). Late Permian carbonate concretions in the marine siliciclastic sediments of the Ravnefjeld Formation, East Greenland. Geology of Greenland Survey Bulletin, 191, 126-132. https://doi.org/10.34194/ggub.v191.5140 _______________ This investigation of carbonate concretions from the Late Permian Ravnefjeld Formation in East Greenland forms part of the multi-disciplinary research project Resources of the sedimentary basins of North and East Greenland (TUPOLAR; Stemmerik et al. 1996, 1999). The TUPOLAR project focuses on investigations and evaluation of potential hydrocarbon and mineral resources of the Upper Permian – Mesozoic sedimentary basins. In this context, the Upper Permian Ravnefjeld Formation occupies a pivotal position because it contains local mineralisations and has source rock potential for hydrocarbons adjacent to potential carbonate reservoir rocks of the partly time-equivalent Wegener Halvø Formation (Harpøth et al. 1986; Surlyk et al. 1986; Stemmerik et al. 1998; Pedersen & Stendal 2000). A better understanding of the sedimentary facies and diagenesis of the Ravnefjeld Formation is therefore crucial for an evaluation of the economic potential of East Greenland.


1964 ◽  
Vol 44 (1) ◽  
pp. 1-8

Early in 1963 much of the land occupied by the Roman building at Fishbourne was purchased by Mr. I. D. Margary, M.A., F.S.A., and was given to the Sussex Archaeological Trust. The Fishbourne Committee of the trust was set up to administer the future of the site. The third season's excavation, carried out at the desire of this committee, was again organized by the Chichester Civic Society.1 About fifty volunteers a day were employed from 24th July to 3rd September. Excavation concentrated upon three main areas; the orchard south of the east wing excavated in 1962, the west end of the north wing, and the west wing. In addition, trial trenches were dug at the north-east and north-west extremities of the building and in the area to the north of the north wing. The work of supervision was carried out by Miss F. Pierce, M.A., Mr. B. Morley, Mr. A. B. Norton, B.A., and Mr. J. P. Wild, B.A. Photography was organized by Mr. D. B. Baker and Mrs. F. A. Cunliffe took charge of the pottery and finds.


1991 ◽  
Vol 71 ◽  
pp. 191-215 ◽  
Author(s):  
Svend Helms

Qaṣr Burqu⃓ is one of the most remote of the Jordanian so-called ‘desert castles’ (quṣūr) of the early Islamic period: it lies some 200km east of⃓Ammān (figs. 1–4). However, it is neither a castle, nor is it in the desert, rather it represents a variety of building types and lies in the dry steppe (areas receiving less than 100mm of rainfall per annum) of the bādiyat al-šām (literally, the steppe lands of Damascus). Furthermore, most of the architectural elements are not necessarily attributable to the early Islamic period, namely the Umayyad Caliphate of the seventh and eighth centuries, despite a ‘building’ inscription (E4: see below, pp. 206–7) of Walīd b. ‘Abd’l-Malik (Caliph AD 705–15), dated AD 700 (H. 81). Rather, the various architectural entities at the site, and their use, span the time from about the third-fourth (probably a little later) to the eighth centuries AD. This time range and the Qaṣr's remote location are significant in relation to the political and economic history of the Near East, particularly in regard of nomad-state relations across the verdant-steppic interface. The time range of the various constructions includes the period following the dissolution of the limes arabicus which had been extensively refurbished and augmented under Diocletian and later under Justinian in the third and sixth centuries AD. Many of the more remote erstwhile fortlets, forts and legionary fortresses were colonized by villagers and nomads, as well as monks and pious hermits. Between the fourth and sixth centuries (particularly in the sixth century under the Ghassānids), purpose-built monasteries and ‘residences’ for hermits were established throughout greater Syria, some of them far out in the steppe. The military station at Nemāras about 80km to the north-east of Qaṣr Burqu⃓, for example, may have become one of several centres, functioning as a παƍεμβολή νομάδον of the Lakhmids in the region, under the leadership of Imru'l-Qays who was called ‘king of the Arabs’ and who was buried there in AD 328. Places like Qaṣr Burqu⃓ and Deir al-Kinn, on the other hand, may have been founded or re-established as monasteries.


1920 ◽  
Vol 57 (11) ◽  
pp. 500-503 ◽  
Author(s):  
J. W. Gregory ◽  
Ethel Currie

THE Geological Department of Glasgow University has recently received from Dr. W. R. Smellie and Mr. J. V. Harrison some fossils collected by them which throw further light on the age of the limestones of the Persian arc at the north-western end of Luristan, about 100 miles north-east of Baghdad. The locality, Gilan, is on a tributary of the Diala, about 30 miles south-east of Kasr-i-Shirin, a well-known station on the main road from Baghdad to Teheran. The geology of this part of the Persian frontier has been investigated by J. de Morgan (Miss. Sci. Perse, vol. iii, pt. i, Étud. Géol., 1905, pp. 71–112), who has given a geological map (ibid., pl. xix) of an area about 60 miles south-east of Gilan. De Morgan has identified there a folded series of Cretaceous and Eocene limestones, with lacustrine and gypsiferous Miocene beds. The locality at which the fossils were collected by Messrs. Smellie and Harrison is in line with the strike of the rocks in the area of de Morgan's map.


Sign in / Sign up

Export Citation Format

Share Document