Research and development of a quantum computing system as an information process.

Author(s):  
V.S. Potapov ◽  
◽  
S.M. Gushansky

Over the past few decades, there has been a significant breakthrough in the field of quantum computing. Research is attracting growing interest, which has recently led to the development of quantum information systems prototypes and methods for their development. The paper describes the characteristics of the information system as an object of architecture and the representation of quantum gates using quantum circuits. A functional-component structure of a quantum information system has been built and a software implementation of a quantum information system has been made on its basis.

2020 ◽  
Vol 174 (3-4) ◽  
pp. 259-281
Author(s):  
Angelo Oddi ◽  
Riccardo Rasconi

In this work we investigate the performance of greedy randomised search (GRS) techniques to the problem of compiling quantum circuits to emerging quantum hardware. Quantum computing (QC) represents the next big step towards power consumption minimisation and CPU speed boost in the future of computing machines. Quantum computing uses quantum gates that manipulate multi-valued bits (qubits). A quantum circuit is composed of a number of qubits and a series of quantum gates that operate on those qubits, and whose execution realises a specific quantum algorithm. Current quantum computing technologies limit the qubit interaction distance allowing the execution of gates between adjacent qubits only. This has opened the way to the exploration of possible techniques aimed at guaranteeing nearest-neighbor (NN) compliance in any quantum circuit through the addition of a number of so-called swap gates between adjacent qubits. In addition, technological limitations (decoherence effect) impose that the overall duration (makespan) of the quantum circuit realization be minimized. One core contribution of the paper is the definition of two lexicographic ranking functions for quantum gate selection, using two keys: one key acts as a global closure metric to minimise the solution makespan; the second one is a local metric, which favours the mutual approach of the closest qstates pairs. We present a GRS procedure that synthesises NN-compliant quantum circuits realizations, starting from a set of benchmark instances of different size belonging to the Quantum Approximate Optimization Algorithm (QAOA) class tailored for the MaxCut problem. We propose a comparison between the presented meta-heuristics and the approaches used in the recent literature against the same benchmarks, both from the CPU efficiency and from the solution quality standpoint. In particular, we compare our approach against a reference benchmark initially proposed and subsequently expanded in [1] by considering: (i) variable qubit state initialisation and (ii) crosstalk constraints that further restrict parallel gate execution.


Open Physics ◽  
2008 ◽  
Vol 6 (1) ◽  
Author(s):  
Michal Sedlák ◽  
Martin Plesch

AbstractAny unitary operation in quantum information processing can be implemented via a sequence of simpler steps — quantum gates. However, actual implementation of a quantum gate is always imperfect and takes a finite time. Therefore, searching for a short sequence of gates — efficient quantum circuit for a given operation, is an important task. We contribute to this issue by proposing optimization of the well-known universal procedure proposed by Barenco et al. [Phys. Rev. A 52, 3457 (1995)]. We also created a computer program which realizes both Barenco’s decomposition and the proposed optimization. Furthermore, our optimization can be applied to any quantum circuit containing generalized Toffoli gates, including basic quantum gate circuits.


Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 79 ◽  
Author(s):  
John Preskill

Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away - we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.


2021 ◽  
Author(s):  
Madiha Khalid ◽  
Najam ul Islam MUHAMMAD ◽  
Umar Mujahid Khokhar ◽  
Atif Jafri ◽  
Hongsik Choi

Abstract The number of transistors per unit area are increasing every year by virtue of Moore’s law. It is estimated that the current rate of evolution in the field of chip design will reduce the transistor to atomic scale by 2024. At atomic level the quantum mechanical characteristics dominate, affecting the ability of transistors to store information in the form of bits. The quantum computers have been proposed as one way to effectively deal with this predicament. The quantum computing circuits utilize the spinning characteristics of electron to store information. This paper describes a proposition of resource efficient FPGA based quantum circuit abstraction. A non-programmable embedded system capable of storing, introducing a phase shift in the qubit and its measurement is implemented. The main objective of the proposed abstraction is to provide a FPGA based platform comprising of fundamental sub blocks for designing quantum circuits. A primary quantum key distribution algorithm i.e BB84 is implemented on the proposed platform as a proof of concept. The distinguishing feature of the proposed design is the flexibility to enhance the quantum circuit emulation accuracy at the cost of computational resources. The proposed emulation exhibits two principal properties of the quantum computing i.e. parallelism and probabilistic measurement.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1175
Author(s):  
Yapeng Wang ◽  
Yongcheng Ding ◽  
Jianan Wang ◽  
Xi Chen

Geometric phases are used to construct quantum gates since it naturally resists local noises, acting as the modularized units of geometric quantum computing. Meanwhile, fast nonadiabatic geometric gates are required for reducing the information loss induced by decoherence. Here, we propose a digital simulation of nonadiabatic geometric quantum gates in terms of shortcuts to adiabaticity (STA). More specifically, we combine the invariant-based inverse engineering with optimal control theory for designing the fast and robust Abelian geometric gates against systematic error, in the context of two-level qubit systems. We exemplify X and T gates, in which the fidelities and robustness are evaluated by simulations in ideal quantum circuits. Our results can also be extended to constructing two-qubit gates, for example, a controlled-PHASE gate, which shares the equivalent effective Hamiltonian with rotation around the Z-axis of a single qubit. These STA-inspired nonadiabatic geometric gates can realize quantum error correction physically, leading to fault-tolerant quantum computing in the Noisy Intermediate-Scale Quantum (NISQ) era.


2001 ◽  
Vol 15 (09) ◽  
pp. 1257-1285 ◽  
Author(s):  
JIANNIS PACHOS ◽  
PAOLO ZANARDI

Holonomic Quantum Computation (HQC) is an all-geometrical approach to quantum information processing. In the HQC strategy information is encoded in degenerate eigen-spaces of a parametric family of Hamiltonians. The computational network of unitary quantum gates is realized by driving adiabatically the Hamiltonian parameters along loops in a control manifold. By properly designing such loops the nontrivial curvature of the underlying bundle geometry gives rise to unitary transformations i.e., holonomies that implement the desired unitary transformations. Conditions necessary for universal QC are stated in terms of the curvature associated to the non-abelian gauge potential (connection) over the control manifold. In view of their geometrical nature the holonomic gates are robust against several kind of perturbations and imperfections. This fact along with the adiabatic fashion in which gates are performed makes in principle HQC an appealing way towards universal fault-tolerant QC.


2018 ◽  
Vol 9 (2) ◽  
pp. 109-114
Author(s):  
Gheorghe Andrei ◽  
Raluca Gâlmeanu ◽  
Florin Radu

Abstract Accounting it’s an important component of the economic information system. E. Horomnea believes that through specific means and procedures, accounting provides: clarifications of the past and the present of the economic entities, pertinent analyzes that are directed to the market; provides guidance on the strategic future; provides motivations and solutions for the decisions made. This article will analyze the evolution of managerial accounting from traditional costing to the new guidelines, when the issue of creating added value and managing third parties needs represents the future of any information system. After 1987 there are continuous changes and concerns, not only at Romanian level but at world wide scale.


Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 30-32
Author(s):  
Tomoyuki Morimae

In cloud quantum computing, a classical client delegate quantum computing to a remote quantum server. An important property of cloud quantum computing is the verifiability: the client can check the integrity of the server. Whether such a classical verification of quantum computing is possible or not is one of the most important open problems in quantum computing. We tackle this problem from the view point of quantum interactive proof systems. Dr Tomoyuki Morimae is part of the Quantum Information Group at the Yukawa Institute for Theoretical Physics at Kyoto University, Japan. He leads a team which is concerned with two main research subjects: quantum supremacy and the verification of quantum computing.


2009 ◽  
Vol 102 (10) ◽  
Author(s):  
Tetsufumi Tanamoto ◽  
Yu-xi Liu ◽  
Xuedong Hu ◽  
Franco Nori

2014 ◽  
Vol 14 (9&10) ◽  
pp. 763-776
Author(s):  
Omar Gamel ◽  
Daniel F.V. James

Periodic functions are of special importance in quantum computing, particularly in applications of Shor's algorithm. We explore methods of creating circuits for periodic functions to better understand their properties. We introduce a method for constructing the circuit for a simple monoperiodic function, that is one-to-one within a single period, of a given period $p$. We conjecture that to create a simple periodic function of period $p$, where $p$ is an $n$-bit number, one needs at most $n$ Toffoli gates.


Sign in / Sign up

Export Citation Format

Share Document