scholarly journals RESULTS OF EXPERIMENTAL BRIQUETTING OF LOGGING WASTE IN THE CONDITIONS OF FOREST TERMINALS

2021 ◽  
Vol 11 (3) ◽  
pp. 109-120
Author(s):  
Ol'ga Kunitskaya ◽  
Aleksandr Pomiguev ◽  
Dar'ya Burmistrova ◽  
Evgeniy Tihonov ◽  
Tamara Storodubtseva

About 100 million m3 of timber waste is generated at forest terminals in the Russian Federation, with a harvesting volume of about 500 million m3 of timber. Waste generated at the terminal can be used to produce generator gas, but this requires preliminary preparation of the raw materials. A homogeneous structure of raw materials is recommended for the efficient use of gas generating plants. It can be achieved, for example, by briquetting the waste after it has been crushed. At the same time, the process of briquetting waste at forest terminals will differ from briquetting in the conditions of specialized enterprises. Timber terminals, which are temporary warehouses for timber, usually do not have a centralized electricity connection. The use of internal combustion engines as power plants significantly increases the cost of the woodworking process, since the cost of fuel is quite high, and the efficiency of internal combustion engines is much lower than that of electric motors. In this regard, the search for the most optimal mobile power plants for power supply of forest terminals is a very urgent task. It is preferable to use lighter presses at terminals, since the requirements for density and strength of briquettes for gas-fired plants are lower than for biofuels intended for sale. Known studies are focused mainly on the production of fuel briquettes sold to third-party consumers with a density of more than 1000 kg/m3. The strength is sufficient at a density of briquettes up to 800 kg/m3 for feeding briquettes into gas generating plants. The deformation characteristics of the compacted material will be different in the indicated density range. It requires further experimental studies

2021 ◽  
pp. 13-20
Author(s):  

The prospects of using the gas-static suspension of the internal combustion engine piston in transport vehicles and power plants are considered. The diagram of the piston and the method for calculating the stiffness and bearing capacity of the gas layer surrounding the piston are presented, as well as the results of experiments that showed the relevance of this method. The possibility of gas and static centering of the engine piston is confirmed. Keywords: internal combustion engine, piston, gasstatic suspension, stiffness, bearing capacity, gas medium. [email protected]


2018 ◽  
Vol 182 ◽  
pp. 01027
Author(s):  
Jan Monieta

The intensity of infrared radiation emitted by objects depends mainly on their temperature. One of the diagnostic signals may be the temperature field. In infrared thermography, this quantity is used as an indicator of the technical condition of marine objects. The article presents an overview of the use of infrared thermography for the diagnosis mainly of marine piston floating objects and various types of reciprocating internal combustion engines as well as examples of own research results. A general introduction to infrared thermography and common procedures for temperature measurement and non-destructive testing are presented. Experimental research was carried out both in laboratory conditions and in the operating conditions of sea-going vessels. Experimental studies consisted of the presentation of photographs of the same objects made in visible light and the use of infrared thermography. The same objects were also compared, but for different cylinders of the tested internal combustion engines as well as for the up state and fault state. The characteristics of the temperature values at selected points were taken depending on the engine load along with the approximation mathematical models of these dependencies.


Author(s):  
Лемешева ◽  
E. Lemesheva ◽  
Митин ◽  
S. Mitin ◽  
Кондрико ◽  
...  

The article analyzes the effective methods and techniques of diagnosing gasoline internal combustion engines, highlighted the most promising ones. Of the existing seven modern methods considered: thermal control, computer diagnostics, analysis of the composition and quantity of waste gases, technical endoskopirovanie, gauging the compression, the analysis of chemical elements and vibroacoustic. On the presented methods compiled a comparative table on a number of parameters: the cost of ongoing services, the cost of equipment, the length of the diagnostic information content requirements for personnel. The advantages and disadvantages of the methods considered in the parameters. It concludes that characterize the main directions of development of systems of technical diagnostics of internal combustion engines.


2015 ◽  
Vol 787 ◽  
pp. 687-691
Author(s):  
Tarigonda Hari Prasad ◽  
R. Meenakshi Reddy ◽  
P. Mallikarjuna Rao

Fossil fuels are exhausting quickly because of incremental utilization rate due to increase population and essential comforts on par with civilization. In this connection, the conventional fuels especially petrol and diesel for internal combustion engines, are getting exhausted at an alarming rate. In order to plan for survival of technology in future it is necessary to plan for alternate fuels. Further, these fossil fuels cause serious environmental problems as they release toxic gases into the atmosphere at high temperatures and concentrations. The predicted global energy consumption is increasing at faster rate. In view of this and many other related issues, these fuels will have to be replaced completely or partially by less harmful alternative, eco-friendly and renewable source fuels for the internal combustion engines. Hence, throughout the world, lot of research work is in progress pertaining to suitability and feasibility of alternative fuels. Biodiesel is one of the promising sources of energy to mitigate both the serious problems of the society viz., depletion of fossil fuels and environmental pollution. In the present work, experiments are carried out on a Single cylinder diesel engine which is commonly used in agricultural sector. Experiments are conducted by fuelling the diesel engine with bio-diesel with LPG through inlet manifold. The engine is properly modified to operate under dual fuel operation using LPG through inlet manifold as fuel along FME as ignition source. The brake thermal efficiency of FME with LPG (2LPM) blend is increased at an average of 5% when compared to the pure diesel fuel. HC emissions of FME with LPG (2LPM) blend are reduced by about at an average of 21% when compared to the pure diesel fuel. CO emissions of FME with LPG (2LPM) blends are reduced at an average of 33.6% when compared to the pure diesel fuel. NOx emissions of FME with LPG (2LPM) blend are reduced at an average of 4.4% when compared to the pure diesel fuel. Smoke opacity of FME with LPG (2LPM) blend is reduced at an average of 10% when compared to the pure diesel fuel.


Author(s):  
A. A. Kondratiuk ◽  

The paper presents the results of theoretical and experimental studies of the environmental characteristics of internal combustion engines of commercial and municipal vehicles operating on the Diesel cycle using a hydrogen additive. The analysis of literature sources has confirmed that there are different data regarding harmful emissions when using hydrogen additives for internal combustion engines running on the Diesel cycle. Therewith, data on harmful emissions of nitrogen oxides NOx differ significantly. The results of theoretical and experimental studies of the environmental characteristics of internal combustion engines of commercial and municipal vehicles operating on a Diesel cycle using a hydrogen additive, allow to assert the adequacy of the model, since the error between the theoretical and experimental data did not exceed 14,5 %. It has been found out that the concentration of NOx emissions in an internal combustion engine using a hydrogen additive, working on a Diesel cycle, has decreased by 52 %.The research results confirm the prospects of using a hydrogen additive, which is done for the first time for internal combustion engines running on the Diesel cycle in commercial and municipal vehicles. This guarantees increased environmental safety in urban agglomerations.


Author(s):  
S Verhelst ◽  
S Verstraeten ◽  
R Sierens

Realizing decreased CO2 emissions from the transport sector will be possible in the near future when substituting (part of) the currently used hydrocarbon-fuelled internal combustion engines (ICEs) with hydrogen-fuelled ICEs. Hydrogen-fuelled ICEs have advanced to such a stage that, from the engine point of view, there are no major obstacles to doing this. The present paper indicates the advantages of hydrogen as a fuel for spark ignition (SI) internal combustion engines. It also shows how the hydrogen engine has matured. An extensive overview is given of the literature on experimental studies of abnormal combustion phenomena, mixture formation techniques, and load control strategies for hydrogen-fuelled engines. The Transport Technology research group of the Department of Flow, Heat and Combustion Mechanics at Ghent University has been working on the development and optimization of hydrogen engines for 15 years. An overview of the most important experimental results is presented with special focus on the most recent findings. The article concludes with a list of engine design features of dedicated hydrogen SI engines.


Author(s):  
V.A. Markov

The paper emphasizes the relevance of research aimed at further improving the systems of automatic control and regulation of heat and power plants, mainly plants with reciprocating internal combustion engines. The study assessed the current level of the development of these systems, and analyzed the prospects of their use as mobile and stationary heat and power plants. These plants are widely used in various sectors of the economy --- energy, transport, agriculture, so it appears important to describe the main directions of further improvement of these plants and their automatic control and regulation systems. The purpose of the research was to further increase the power indicators of heat and power plants, improve their fuel efficiency and exhaust gas toxicity, and enhance the dynamic qualities of internal combustion engines. In our study, we also examined the main directions of improving the fuel supply and air supply systems of engines, their work process, adaptation of engines to work on various alternative types of fuel. Findings of research show that it is necessary to expand the functional capabilities of control and regulation systems, implement integrated adaptive control of a heat and power plant and its systems, use electronic microprocessor devices in the structure of regulators, enhance the multi-parameter efficiency of the operation of a heat and power plant and its elements, taking into account the whole set of parameters of this plant The paper was based on the materials of the reports of the all-Russian scientific and technical conference n.a. Professor V.I. Krutov (29.01.2020)


Sign in / Sign up

Export Citation Format

Share Document