scholarly journals A SURVEY INTERNET OF THINGS (IOT) - APPLICATIONS, BENEFITS& CHALLENGES

2018 ◽  
Vol 28 (5) ◽  
pp. 1705-1711
Author(s):  
Verda Misimi ◽  
Miranda Xhaferi

Communication between people isunavoidable nowadays; sending and receiving information through internet among people is our daily routine which is known as Internet of People. Hence, this kind of communication has grown even more, making possible to communicate not just people but also things which is known as Internet of Things, one of the trendiest technology. The Internet of Things or IoT refers to the billions of physical devices around the world that are now connected to the internet, collecting and sharing data.The increase of population in urban places and their requirements impose the creation of a system that will satisfy all of these requirements. Due to the increasing number of population the numbers of things that people own has grown enormously. Therefore, this fact generated the idea of adding sensors and intelligence to basic objects. Thanks to cheap processors, wireless network,sensors and actuators is possible to turn anything, from a pill to an aeroplane, into part of the Internet of Things. Combining these digital things in the past was very difficult or barely possible simply because the technology was not ready. The IoT integrates the interconnectedness of human culture- our “things” with the interconnectedness of our digital information system- “the internet”.The development of modern technologies and the Internet of Things establishmentmerged the digital and physical worlds, namely adding digital intelligence to devices that would be otherwise dumb, enabling them to communicate.The potential of this tendencyincreases day by day, enabling a very wide usage. The Internet of Things aims to provide a simple interaction between the physical world and virtual world, integrating a large number of devices of the real world to the internet. The Internet of Things promises to make our environment - our homes,offices and vehicles smarter, more measurable and chattier.The benefits of Internet of Things depend on the particular implementation, but the key is that enterprises should have access to more data about their own things and their own internal system and a greater ability to make changes as a result. It is impossible to predict all IoT applications considering the swift progress of technology and the diversely requirements of consumers. Thus, in our paper we will mention some of the most used and most important applications of IoT, as well the benefits of its implementation in different platforms in different environments. In the end, we emphasize the challenges we face during IoT application, moreoverthe common issues in the adoption of IoT on a large scale.

2019 ◽  
Vol 1 (2) ◽  
pp. 16 ◽  
Author(s):  
Deepak Choudhary

The Internet of Things (IoT) enables the integration of data from virtual and physical worlds. It involves smart objects that can understand and react to their environment in a variety of industrial, commercial and household settings. As the IoT expands the number of connected devices, there is the potential to allow cyber-attackers into the physical world in which we live, as they seize on security holes in these new systems. New security issues arise through the heterogeneity  of  IoT  applications and devices and their large-scale deployment.


Author(s):  
Karthick G. S. ◽  
Pankajavalli P. B.

The internet of things (IoT) is aimed at modifying the life of people by adopting the possible computing techniques to the physical world, and thus transforming the computing environment from centralized form to decentralized form. Most of the smart devices receive the data from other smart devices over the network and perform actions based on their implemented programs. Thus, testing becomes an intensive process in the IoT that will require some normalization too. The composite architecture of IoT systems and their distinctive characteristics require different variants of testing to be done on the components of IoT systems. This chapter will discuss the necessity for IoT testing in terms of various criteria of identifying and fixing the problems in the IoT systems. In addition, this chapter examines the core components to be focused on IoT testing and testing scope based on IoT device classification. It also elaborates the various types of testing applied on healthcare IoT applications, and finally, this chapter summarizes the various challenges faced during IoT testing.


2022 ◽  
pp. 571-601
Author(s):  
Karthick G. S. ◽  
Pankajavalli P. B.

The internet of things (IoT) is aimed at modifying the life of people by adopting the possible computing techniques to the physical world, and thus transforming the computing environment from centralized form to decentralized form. Most of the smart devices receive the data from other smart devices over the network and perform actions based on their implemented programs. Thus, testing becomes an intensive process in the IoT that will require some normalization too. The composite architecture of IoT systems and their distinctive characteristics require different variants of testing to be done on the components of IoT systems. This chapter will discuss the necessity for IoT testing in terms of various criteria of identifying and fixing the problems in the IoT systems. In addition, this chapter examines the core components to be focused on IoT testing and testing scope based on IoT device classification. It also elaborates the various types of testing applied on healthcare IoT applications, and finally, this chapter summarizes the various challenges faced during IoT testing.


Author(s):  
Bamigboye Funmilayo ◽  
Ojo Emmanuel Ademola

In Africa, about 300 million people are undernourished, and there is mounting evidence linking food insecurity to rapid population growth. Profitable production of crops and animals in large quantity is hinged on improved practices using modern tools: internet of things (IoT). The internet of things has the purpose of providing ICT infrastructure facilitating the exchange of ‘things' in a secure and reliable manner. Its function is to overcome the gap between objects in the physical world and their representation in information systems. Agribusiness empowered by IoT has opportunities in crop and animal health assessment and monitoring. They include agricultural drone services, crop and livestock production and management, digital information platforms, online sales and purchase of agricultural products (e-commerce), export and marketing of farm produce or processed products. In conclusion, young people will be gainfully engaged if they can be provided the Internet of Things enabled agribusiness.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 545
Author(s):  
Risabh Mishra ◽  
M Safa ◽  
Aditya Anand

Recent advances in wireless communication technologies and automobile industry have triggered a significant research interest in the field of Internet of Vehicles over the past few years.The advanced period of the Internet of Things is guiding the development of conventional Vehicular Networks to the Internet of Vehicles.In the days of Internet connectivity there is need to be in safe and problem-free environment.The Internet of Vehicles (IoV) is normally a mixing of three networks: an inter-vehicleNetwork, an intra-vehicle network, and a vehicle to vehicle network.Based on  idea of three networks combining into one, we define  Internet of Vehicles as a large-scale distributed system to wireless communication and information exchange between vehicle2X (X: vehicle, road, human and internet).It is a combined   network for supporting intelligent traffic management, intelligent dynamic information service, and intelligent vehicle control, representation of an application of the Internet of Things (IoT) technology for intelligent transportation system (ITS).  


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Federica Paganelli ◽  
David Parlanti

Current trends towards the Future Internet are envisaging the conception of novel services endowed with context-aware and autonomic capabilities to improve end users’ quality of life. The Internet of Things paradigm is expected to contribute towards this ambitious vision by proposing models and mechanisms enabling the creation of networks of “smart things” on a large scale. It is widely recognized that efficient mechanisms for discovering available resources and capabilities are required to realize such vision. The contribution of this work consists in a novel discovery service for the Internet of Things. The proposed solution adopts a peer-to-peer approach for guaranteeing scalability, robustness, and easy maintenance of the overall system. While most existing peer-to-peer discovery services proposed for the IoT support solely exact match queries on a single attribute (i.e., the object identifier), our solution can handle multiattribute and range queries. We defined a layered approach by distinguishing three main aspects: multiattribute indexing, range query support, peer-to-peer routing. We chose to adopt an over-DHT indexing scheme to guarantee ease of design and implementation principles. We report on the implementation of a Proof of Concept in a dangerous goods monitoring scenario, and, finally, we discuss test results for structural properties and query performance evaluation.


2018 ◽  
Vol 33 (6) ◽  
pp. 749-767 ◽  
Author(s):  
Seppo Leminen ◽  
Mervi Rajahonka ◽  
Mika Westerlund ◽  
Robert Wendelin

Purpose This study aims to understand their emergence and types of business models in the Internet of Things (IoT) ecosystems. Design/methodology/approach The paper builds upon a systematic literature review of IoT ecosystems and business models to construct a conceptual framework on IoT business models, and uses qualitative research methods to analyze seven industry cases. Findings The study identifies four types of IoT business models: value chain efficiency, industry collaboration, horizontal market and platform. Moreover, it discusses three evolutionary paths of new business model emergence: opening up the ecosystem for industry collaboration, replicating the solution in multiple services and return to closed ecosystem as technology matures. Research limitations/implications Identifying business models in rapidly evolving fields such as the IoT based on a small number of case studies may result in biased findings compared to large-scale surveys and globally distributed samples. However, it provides more thorough interpretations. Practical implications The study provides a framework for analyzing the types and emergence of IoT business models, and forwards the concept of “value design” as an ecosystem business model. Originality/value This paper identifies four archetypical IoT business models based on a novel framework that is independent of any specific industry, and argues that IoT business models follow an evolutionary path from closed to open, and reversely to closed ecosystems, and the value created in the networks of organizations and things will be shareable value rather than exchange value.


Connectivity ◽  
2020 ◽  
Vol 148 (6) ◽  
Author(s):  
S. A. Zhezhkun ◽  
◽  
L. B. Veksler ◽  
S. M. Brezitsʹkyy ◽  
B. O. Tarasyuk

This article focuses on the analysis of promising technologies for long-range traffic transmission for the implementation of the Internet of Things. The result of the review of technical features of technologies, their advantages and disadvantages is given. A comparative analysis was performed. An analysis is made that in the future heterogeneous structures based on the integration of many used radio technologies will play a crucial role in the implementation of fifth generation networks and systems. The Internet of Things (IoT) is heavily affecting our daily lives in many domains, ranging from tiny wearable devices to large industrial systems. Consequently, a wide variety of IoT applications have been developed and deployed using different IoT frameworks. An IoT framework is a set of guiding rules, protocols, and standards which simplify the implementation of IoT applications. The success of these applications mainly depends on the ecosystem characteristics of the IoT framework, with the emphasis on the security mechanisms employed in it, where issues related to security and privacy are pivotal. In this paper, we survey the security of the main IoT frameworks, a total of 8 frameworks are considered. For each framework, we clarify the proposed architecture, the essentials of developing third-party smart apps, the compatible hardware, and the security features. Comparing security architectures shows that the same standards used for securing communications, whereas different methodologies followed for providing other security properties.


2020 ◽  
Author(s):  
Anbiao Huang ◽  
Shuo Gao ◽  
Arokia Nathan

In Internet of Things (IoT) applications, among various authentication techniques, keystroke authentication methods based on a user’s touch behavior have received increasing attention, due to their unique benefits. In this paper, we present a technique for obtaining high user authentication accuracy by utilizing a user’s touch time and force information, which are obtained from an assembled piezoelectric touch panel. After combining artificial neural networks with the user’s touch features, an equal error rate (EER) of 1.09% is achieved, and hence advancing the development of security techniques in the field of IoT.


Author(s):  
Mikael Wiberg

Computing is increasingly intertwined with our physical world. From smart watches to connected cars, to the Internet of Things and 3D-printing, the trend towards combining digital and analogue materials in design is no longer an exception, but a hallmark for where interaction design is going in general. Computational processing increasingly involves physical materials, computing is increasingly manifested and expressed in physical form, and interaction with these new forms of computing is increasingly mediated via physical materials. Interaction Design is therefore increasingly a material concern. – Welcome to a book on the materiality of interaction, welcome to a book on material-centered interaction design! In this introduction to this book, “The Materiality of Interaction – Notes on the Materials of Interaction Design”, I describe the contemporary trend in interaction design towards material interactions, I describe how interaction design is increasingly about materials, and I propose “Material-centered interaction design” as a method for working with materials in interaction design projects.


Sign in / Sign up

Export Citation Format

Share Document