scholarly journals Kemampuan Agroforestri Berbasis Kopi (Coffea arabica) dalam Menyimpan Cadangan Karbon

2019 ◽  
Vol 7 (1) ◽  
pp. 34
Author(s):  
Fahriza Luth ◽  
Hadi Setiyono

      Each type of forest ecosystem and the species in it have different abilities to absorb CO2 and produce biomass. Coffee-based agroforestry is thought to be able to increase the ability of forests to store carbon as a result of increasing species composition and density of plants in these forest areas. This study aims to determine the composition of plants and carbon stocks stored in coffee-based agroforestry forests in LMDH Paniis RPH Rancakalong BKPH East Manglayang KPH Sumedang Perum Perhutani Regional Division West Java and Banten. This study uses survey and laboratory methods. Data collection is done by collecting data directly at the research location, which is in the agroforestry forest area and natural forest area (as a comparison). Data obtained through observations in the field and laboratory are in the form of tree names, wood density, tree biomass and carbon stocks from biomass. The result shows that the agroforestry forest composition at LMDH Paniis RPH Rancakalong BKPH East Manglayang KPH Sumedang within 17,14 ha consists of Pine (Pinus mercusii), Big-leaf Mahogany (Swietenia macrophylla), Clove (Syzygium aromaticum) dan Coffee (Coffea arabica). The carbon stock is 1.869,73 kg/ha in agroforestry forest, 2.618,32 kg/ha in primary natural forest, and 1.460,91 kg/ha in secondary natural forest. Agroforestry forest has more carbon stock than the secondary natural forest, but agroforestry forest has less carbon stock than primary natural forest.

2012 ◽  
Vol 26 (1) ◽  
pp. 45
Author(s):  
Dedi Hermon

The purpose of this study was to analyse the dynamics of carbon stocks changes from land cover into land settlement in the Padang City, West Sumatra. Method to formulate the change of land cover into land settlement in the Padang City is the analysis of Landsat Imagery 5+TM 1988, Landsat 7+ETM Image of 1998 and Landsat 7+ETM Image of 2008. Stratified Sampling Technique was Purpose Composite plot refers to the technique, but in this study carried out modification to the size of the plot which is then converted to the extend of each hectare of land cover. Estimating tree biomass using the equation according Kattering allometric, (2001). The result of the research conducted found that the dynamics of carbon stocks always decline from 1988, 1998 and 2008. This is caused by a reduction in forest area, shrubs, gardens, and fields are consistently due to the increased amount of land used for settlement.


2021 ◽  
Vol 886 (1) ◽  
pp. 012072
Author(s):  
Muthmainnah ◽  
A Abdullah ◽  
A Ridha ◽  
S Rusyidi

Abstract This study aimed to determine the biomass potential of Trigona sp honey bees in Bontotiro subdistrict as well as its carbon stock and carbon sequestration. The research was carried out for two months starting from May to June 2021, located in the sub district of Bontotiro, district of Bulukumba. The biomass measurement was carried out by making 11 plots with a size of 20 x 20 for the tree level, 10 m x 10 m for the poles level, and 5 m x 5 m for the sapling level. Tree biomass was calcula ted using allometric equations. Measurement of carbon stocks was carried out by multiplying the total biomass with the percentage value of carbon content of 0.47, while the carbon sequestration was calculated by multiplying the average annual growth of biomass with the conversion rate of 1.4667 obtained from the photosynthesis equation. The results showed that the potential of biomass of tree, poles, and sapling levels were 4.5, 1.4, and 0.3 tons/year, respectively. The carbon stocks of the tree, poles, and sapling levels were 68.6, 13.7, and 1.8 tons/year, respectively. The carbon sequestration of the tree, poles, and sapling were 6.6, 2.1, and 0.56 tons/year, respectively.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 227
Author(s):  
Tamiru Kefalew ◽  
Mulugeta Betemariyam ◽  
Motuma Tolera

Background Gura-Ferda forest is one of the Afromontane rainforests in the southwestern region of Ethiopia. However, since 1984, large parts of this forest have become increasingly disturbed and fragmented due to forest conversion into forest farm interface and farmlands. The study was conducted to assess changes of woody species diversity and carbon stock in association with the conversion of natural forest to forest farm interface and farmlands. Methods Data were collected from natural forest, forest farm interface and farmland which are historically forest lands before 1984. A total of 90 nested plots (20m×20m for natural forest and forest farm interface; 50m*100m for farmland)) were established for inventory of woody species. Three 1m×1m subplots were established to collect litter and soil samples. A total of 180 soil samples were collected. The total carbon stocks were estimated by summing carbon stock in the biomass and soil (0-60 cm depth). Results Results showed that Shannon-Wiener diversity (H’) in forest farm interface (H’ = 1.42±0.49) is significantly lower than that of natural forest (H’ = 2.72±0.31) but significantly higher than farmland (H’ = 1.08±0.57). The total carbon stocks of natural forest (388.54±161.63 Mg C ha-1) were approximately 1.53 and 2.67 times higher than that of forest farm interface (252.95±41.86 Mg C ha-1) and farmland (145.58±25.94 Mg C ha-1). Conclusion Our study revealed that along the conversion gradient of natural forest to forest farm interface and farmland there was a significant change of woody species diversity and carbon stocks.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Thomas Paul ◽  
Mark O. Kimberley ◽  
Peter N. Beets

Abstract Background Natural forests cover approximately 29% of New Zealand’s landmass and represent a large terrestrial carbon pool. In 2002 New Zealand implemented its first representative plot-based natural forest inventory to assess carbon stocks and stock changes in these mostly undisturbed old-growth forests. Although previous studies have provided estimates of biomass or carbon stocks, these were either not fully representative or lacked data from important pools such as dead wood (coarse woody debris). The current analysis provides the most complete estimates of carbon stocks and stock changes in natural forests in New Zealand. Results We present estimates of per hectare carbon stocks and stock changes in live and dead organic matter pools excluding soil carbon based on the first two measurement cycles of the New Zealand Natural Forest Inventory carried out from 2002 to 2014. These show that New Zealand’s natural forests are in balance and are neither a carbon source nor a carbon sink. The average total carbon stock was 227.0 ± 14.4 tC·ha− 1 (95% C.I.) and did not change significantly in the 7.7 years between measurements with the net annual change estimated to be 0.03 ± 0.18 tC·ha− 1·yr− 1. There was a wide variation in carbon stocks between forest groups. Regenerating forest had an averaged carbon stock of only 53.6 ± 9.4 tC·ha− 1 but had a significant sequestration rate of 0.63 ± 0.25 tC·ha− 1·yr− 1, while tall forest had an average carbon stock of 252.4 ± 15.5 tC·ha− 1, but its sequestration rate did not differ significantly from zero (− 0.06 ± 0.20 tC·ha− 1·yr− 1). The forest alliance with the largest average carbon stock in above and below ground live and dead organic matter pools was silver beech-red beech-kamahi forest carrying 360.5 ± 34.6 tC·ha− 1. Dead wood and litter comprised 27% of the total carbon stock. Conclusions New Zealand’s Natural Forest Inventory provides estimates of carbon stocks including estimates for difficult to measure pools such as dead wood and roots. It also provides estimates of uncertainties including effects of model prediction error and sampling variation between plots. Importantly it shows that on a national level New Zealand’s natural forests are in balance. Nevertheless, this is a nationally important carbon pool that requires continuous monitoring to identify potential negative or positive changes.


2021 ◽  
Vol 917 (1) ◽  
pp. 012043
Author(s):  
Markum ◽  
A C Ichsan ◽  
M Saputra ◽  
A T Lestari ◽  
G Anugrah

Abstract This article aims to explore the implementation of agroforestry patterns in the Sesaot forest area and the impacts on the local community income and the carbon stocks. It is written based on descriptive research, data are collected through observation, interviews, and FGDs to 42 respondents, and measuring carbon stocks in 18 locations. The analysis in this study is divided into three: 1) clustering based on plant dominance to identify existing agroforestry patterns, 2) allometric equations to measure the amount of carbon stock, and 3) using scoring to analyze the identified agroforestry patterns to find out the most optimal. This study finds that there are four agroforestry patterns in this area: candlenut dominant, mahogany dominant, mixed agroforestry, and simple agroforestry. From these patterns, mixed agroforestry seems to be the best practice in this area since it has complied with the principles of sustainable forest management both from the perspective of economic and the environment.


2019 ◽  
Vol 7 (1) ◽  
pp. 124-129
Author(s):  
Ratna Silwal Gautam

Carbon sequestration is one of the main ecosystem services in today’s condition. Estimation of above ground tree biomass and carbon stock is important as it gives ecological and economic benefits to the local people. This study was conducted in the Hasantar Community Forest (HCF) of Nagarjun Municipality, Kathmandu. Concentric circular plots of 12.62m radius were established in five different blocks of HCF for the study of tree species. The main objective of this study was to find out the Important Value Index (IVI), Above Ground Tree Biomass (AGTB) and carbon stocks tree species of HCF. This forest comprises the tree species of families like fagacaeae, moraceae, myrtaceae, fabaceae etc in dominant numbers. Schima wallichii was found ecologically most significant tree species as it possess highest IVI value. The carbon stock of this plant was found as   206.865 t/ha which comprises 27 % of total carbon in HCF. The total above ground tree carbon stock of HCF (55.4 ha.) was found 144.795 t/ha. Int. J. Appl. Sci. Biotechnol. Vol 7(1): 124-129


2021 ◽  
pp. 67-83
Author(s):  
Markum Markum ◽  
Andy C Ichsan ◽  
Maiser Saputra ◽  
M Rifky Tirta Mudhofir

The Sesaot forest area has been managed by the community through the Social Forestry scheme with an agroforestry system. The objectives of the study were to identify the diversity of agroforestry patterns, analyze incomes on various agroforestry patterns, analyze the amount of carbon stock and analyze the most optimal agroforestry patterns. The method used is descriptive through a series of observations, interviews and Focus Group Discussions, to 42 respondents and measurement of carbon stocks in 18 farmer locations. Analysis of agroforestry patterns was carried out by making clusters based on plant dominance, analyzing the amount of carbon using allometric equations and analyzing the optimal value of agroforestry patterns using scoring. Based on the results of the study, it can be concluded that: there are four agroforestry patterns in the Sesaot Forest Area, namely, candlenut dominant agroforestry, mahogany dominant agroforestry, mixed agroforestry and simple agroforestry. The largest income was obtained in the mixed agroforestry pattern and the smallest was in the mahogany dominant. Meanwhile, the largest amount of carb on stock was found in the mahogany dominant and the smallest was in the simple agroforestry. The results of the scoring analysis show that mixed agroforestry practices are in the most optimal category compared to other agroforestry patterns.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 227
Author(s):  
Tamiru Kefalew ◽  
Mulugeta Betemariyam ◽  
Motuma Tolera

Background: Gura-Ferda forest is one of the Afromontane rainforests in the southwestern region of Ethiopia. However, since 1984, large parts of this forest have become increasingly disturbed and fragmented due to forest conversion into forest farm interface and farmlands. The study was conducted to assess changes of woody species diversity and carbon stock in association with the conversion of natural forest to forest farm interface and farmlands. Methods: Data were collected from natural forest, forest farm interface and farmland which are historically forest lands before 1984. A total of 90 nested plots (20m×20m for natural forest and forest farm interface; 50m*100m for farmland)) were established for inventory of woody species. Three 1m×1m subplots were established to collect litter and soil samples. A total of 180 soil samples were collected. The total carbon stocks were estimated by summing carbon stock in the biomass and soil (0-60 cm depth). Results: Results showed that Shannon-Wiener diversity (H’) in forest farm interface (H’ = 1.57) is relatively lower than that of natural forest (H’ = 3.33) but higher than farmland (H’ = 1.42). The total carbon stocks of natural forest were approximately 1.21 and 2.54 times higher than that of forest farm interface and farmland. Conclusion: Our study revealed that the changes of Natural Forest to Forest Farm Interface and Farmland have effects on the diversity of woody species and carbon stocks.


Sign in / Sign up

Export Citation Format

Share Document