scholarly journals X-RAY SPECTRAL MICROANALYSIS OF ELECTROEROSIVE POWDER MATERIAL OBTAINED IN AN ETHYL ALCOHOL MEDIUM FROM WASTE OF A NON-TUNGSTEN HARD ALLOY OF THE KNT16 BRAND

Author(s):  
E. V. Ageeva ◽  
B. N. Sabel’nikov

The first appearance of tungsten-free hard alloys (TFHA) was noted in the early 30s of the last century, but they did not receive due attention and, accordingly, spread due to insufficient strength and were replaced by tungsten-containing alloys of such groups as VK, TC and TTK. However, the rapidly developing shortage of expensive tungsten pushed in the late 50s to return to the search for hard alloys, the composition of which does not include tungsten. Due to the growing demand for tungsten-free hard alloys, the problem of recycling their waste with the possibility of reuse is acute in the industry. The purpose of this work was to conduct x-ray spectral microanalysis (RSMA) of powder material (PM) obtained by electroerosive dispersion (EED) in ethyl alcohol from waste of a non-tungsten hard alloy of the KNT16 brand. The resulting powder material was examined using an energy-dispersion x-ray analyzer from EDAX, built into a scanning electron microscope "QUANTA 600 FEG". In the course of scientific research, the spectra of characteristic x-ray radiation on the surface of the experimentally obtained sample were obtained. The results obtained in the course of scientific research can be used to create environmentally friendly resource-saving processes for processing waste of tungsten-free hard alloys into powder materials.

2020 ◽  
Vol 315 ◽  
pp. 01002 ◽  
Author(s):  
Vladimir Serebrovsky ◽  
Boris Sabel’nikov

This article presents a study of the phase composition of powder electroerosive materials of TFHA grade KNT16, obtained in ethyl alcohol. It was established that the main phases in the test sample are TiC, MoNi3, Ni, Mo.


2020 ◽  
Vol 329 ◽  
pp. 02011
Author(s):  
B.N. Sabel’nikov ◽  
A.E. Ageeva ◽  
V.O Podanov ◽  
M.S Korolev
Keyword(s):  

This article presents the results of X-ray spectral microanalysis and the study of the microstructure of an experimental electroerosive powder material obtained from waste of a tungsten-free hard alloy grade KNT16.


2020 ◽  
Vol 4 (141) ◽  
pp. 123-131
Author(s):  
IL’YA ROMANOV ◽  

The development of energy and resource-saving methods and technologies for strengthening and restoring the working bodies of agricultural machinery will increase their abrasive wear resistance and durability by using materials from machine-building waste and reduce the cost by 10-30 percent without reducing operational characteristics. (Research purpose) The research purpose is in increasing the abrasive wear resistance and durability of cultivator legs by surfacing powder materials obtained by electroerosive dispersion from solid alloy waste by high-frequency currents. (Materials and methods) Authors obtained a powder for research on their own experimental installations of the CCP "Nano-Center" of electroerosive dispersion from waste of sintered hard alloys of the T15K6 brand. The microhardness of powders and coatings on microshifts was measured using the PMT-3 device, and the hardness of coatings with the KMT-1 microhardometer was measured using the Rockwell method according to GOST 9013-59. The microwave-40AV installation was used to assess the wear resistance of materials of working bodies of tillage machines. (Results and discussion) In the course of laboratory wear tests the relative wear resistance of samples hardened by high-frequency surfacing currents significantly exceeds the wear resistance of non-hardened samples made OF 65g steel, accepted as the reference standard. (Conclusions) Based on the results of experimental studies, the article proposes a new resource-saving technological process for strengthening the working bodies of agricultural machinery through the use of materials from machine-building waste, which allows increasing the abrasive wear resistance of working bodies by 1.5-2 times due to the use of tungsten-containing materials.


Author(s):  
D. J. Bailey ◽  
M. C. Stennett ◽  
J. Heo ◽  
N. C. Hyatt

AbstractSEM–EDX and Raman spectroscopy analysis of radioactive compounds is often restricted to dedicated instrumentation, within radiological working areas, to manage the hazard and risk of contamination. Here, we demonstrate application of WetSEM® capsules for containment of technetium powder materials, enabling routine multimodal characterisation with general user instrumentation, outside of a controlled radiological working area. The electron transparent membrane of WetSEM® capsules enables SEM imaging of submicron non-conducting technetium powders and acquisition of Tc Lα X-ray emission, using a low cost desktop SEM–EDX system, as well as acquisition of good quality μ-Raman spectra using a 532 nm laser.


2017 ◽  
Vol 902 ◽  
pp. 60-64
Author(s):  
Judith Alejandra Velázquez Perez ◽  
Wilfrido Martínez Molina ◽  
Hugo Luis Chávez García ◽  
Elia Mercedes Alonso Guzmán ◽  
Rosalía Ruiz Ruiz

This research is an investigation about the use of powder material additions with mortars lime base for a possible implementation in construction and/or restoration of historical sites. Mortars were elaborated in laboratory conditions with a 1:2.5 in weight proportion. One of the proofs to which these mortars were submitted was the test of capillary absorption; this way, the influence of the materials added to powder in these mortars determined porosity. Mortars were made with different percentages of materials. These powder materials are brick manufacturing ash, quarry powder, clay and maize starch. The test was run during 350 to 700 days. It obtained better results with 700 days than with 350 days.


Vestnik MGSU ◽  
2019 ◽  
pp. 450-463
Author(s):  
Eduard S. Tskhovrebov

Introduction. The article considers the problems of using regional-developed territorial methods of waste handling including solid municipal waste for forming regional management systems of waste handling. Issues of expedience of forming secondary resource handling management strategies (with plans of measures on their implementation and target parameters) at regional level are studied. The strategies can become fundamental goals for creation and development of waste treatment infrastructure, efficient mechanism of resource economy management and secondary resource handling in the system of Russian industrial, construction and municipal complex. Solving problems of resource saving and involving secondary resources in economic turnover is of great importance at the modern stage of development of Russia. The aim of the study is to develop a conceptual base for forming regional strategies of the secondary resource handling. Materials and methods. The following materials are used for scientific research: legal certificates, specifications and technical documentation on the waste handling, published materials by domestic and foreign scientific researchers on the given subjects. Methods of scientific research are based on application of comparative and expert kinds of the analysis. Results. The article suggests a methodical approach to creation of a concept of typical project of regional strategy of resource saving and secondary resource turnover, to definition of target regional activity indicators in the given area. Conclusions. Scientific novelty of the research is in integrated system approach to solving the resource saving problems and secondary resource handling at the regional level. Introduction of results of this work will allow providing a scientific and methodical substantiation of creation and development of effective regional management systems in the field of secondary resource handling.


2021 ◽  
Vol 877 (1) ◽  
pp. 012009
Author(s):  
Mohammed Qasim Kareem ◽  
Vladimir Dorofeyev

Abstract It is possible to expand the applications ranges of powder material products by enhancing the performance properties of these products in addition to their manufacturability and reliability together, it’s possible by materials structures modification. In this paper, the effect of fullerene (C60) additives to iron-based powder material has been studied. All samples produced by Hot-Forging (HF) powder materials technology. Green and HF density of the obtained samples calculated by volume / weight and Archimede’s principle, respectively. The effect of technological parameters on the microstructure of carbon steels’ samples was done by an ALTAMI MET-1M metallographic microscope. Tensile test executed by using of a universal testing machine UMM –5 and the microhardness (HV10) was measured by REICHERT hardness test machine. The results showed that the HF C60 steels’ samples had higher density and strength of 0.81 and 25%, respectively, with a good plasticity in comparison with graphite steels’ samples.


2020 ◽  
Author(s):  
Mikhail Nikolaevich Zakharov ◽  
Nina Iosifovna Ilinykh ◽  
Olga Vladimirovna Romanova ◽  
Olga Fedorovna Rybalko

In this study, the possibility of using of the following technogenic raw materials to obtain a composite material was considered: titanium-containing slag, with the addition of aluminum bronze grade PG-19M-01 (TU 48-4206-156-82) and aluminum powder grade PA-4 (GOST 6058-73). The percentage of components in the mixture were as follows (wt. %): slag - 40, PG-19M-01 - 30, PA-4 - 30. A thermodynamic simulation of the selected system was preliminarily carried out using TERRA program in the temperature range 273 - 4273 K. The chemical and granulometric composition of the initial powders was investigated. From the powder mixture there were compressed the tablets and then they were sintered in an inert atmosphere. Micro-X-ray analysis of sintered samples showed that they consist of large particles of various shapes, most likely containing titanium and iron aluminides, their compounds between themselves and with copper. Keywords: titanium-containing slag, composite material, thermodynamic modeling, intermetallic compounds, pressing, powder materials


2019 ◽  
Vol 974 ◽  
pp. 356-361
Author(s):  
O.V. Kuznetsova ◽  
N.D. Yatsenko ◽  
A.I. Subbotin ◽  
M.Yu. Klimenko

The modern building materials market places high demands on heat-insulating and heat-insulating structural materials. In this connection, the issues of developing high-quality building materials obtained on the resource-saving technologies basis allowing to solve two interrelated problems are topical. The first problem is the industrial waste generated and existing stocks disposal. The second is associated with a decrease in the traditional raw materials deficit [1]. These problems solution, combining rational technological solutions, is based on the scientific research achievements in this area, in particular in the foam glass production. The priority scientific research areas in the foam glass materials production are the developments related to the study, the new raw materials use and the production of foam glass mixture compositions on their basis, which provide, along with the necessary performance properties, high environmental safety requirements [2, 3].


Sign in / Sign up

Export Citation Format

Share Document