scholarly journals Experimental model tests to improve a tanker resistance performance

Author(s):  
Dan Obreja

The ship resistance is one of the most important hydrodynamics performances, being related to the contractual ship speed. The experimental model tests can be used to measure and improve the resistance performance. In this paper, the possibility of using the experimental techniques in order to improve a tanker model resistance is demonstrated, based on a bulbous bow modelling solution. In this context, the results obtained in the Towing Tank of the Naval Architecture Faculty of “Dunarea de Jos” University of Galati, related to a tanker model resistance with and without bulbous bow are presented. The bulbous bow form was realised based on the hydrodynamics principles adapted to the bow forms of the tanker. In the case of the bulbous bow solution, a significant reduction of over 8% of the tanker model resistance was obtained, in the design speed domain.

Author(s):  
Dan Obreja

The implementation of innovative solutions in the field of shipbuilding requires the continuous development of research infrastructure. The hydro-aerodynamic problems of fluid flow around the hulls can be solved with numerical and/or experimental techniques. In any case, the validation of the numerical solutions is performed in specialized hydro-aerodynamic laboratories by means of the experimental model tests. In this context, a wind tunnel was developed at the Naval Architecture Faculty of “Dunarea de Jos” University of Galati, in order to measure the aerodynamic forces and moments or the speed and pressure distribution on the hull, generated by the wind action. This paper presents the most important types of problems that can be experimentally approached in the aerodynamic tunnel and the specific experimental equipments. The wind tunnel development was financed from the university funds.


Author(s):  
George Ciprian Iatan ◽  
Dan Obreja

The catamaran resistance is an important hydrodynamic performance that must be studied starting with the initial design stage. In this paper, both theoretical and experimental analysis of a Danube Delta passenger catamaran resistance was developed. The method proposed by Sahoo et al. for catamaran with rounded bilge was applied to estimate the ship resistance. Experimental model tests were performed in the Towing Tank of “Dunarea de Jos” University of Galati, in order to determine the optimal distance between the hulls of the catamaran. Important differences were observed between the theoretical and experimental results.


2020 ◽  
Vol 17 (6) ◽  
pp. 172988142097677
Author(s):  
Zhilin Liu ◽  
Linhe Zheng ◽  
Guosheng Li ◽  
Shouzheng Yuan ◽  
Songbai Yang

In recent years, the trimaran as a novel ship has been greatly developed. The subsequent large vertical motion needs to be studied and resolved. In this article, an experimental study for a trimaran vertical stabilization control is carried out. Three modes including the bare trimaran (the trimaran without appendages, the trimaran with fixed appendages, and the trimaran with controlled appendages) are performed through model tests in a towing tank. The model tests are performed in regular waves. The range of wave period is 2.0–4.0 s, and the speed of the carriage is 2.93 and 6.51 m/s. The results of the three modes show the fixed appendages and the actively controlled appendages are all effective for the vertical motion reduction of the trimaran. Moreover, the controlled appendages are more effective for the vertical stability performance of the trimaran.


2014 ◽  
Vol 66 (2) ◽  
Author(s):  
Mohammadreza Fathi Kazerooni ◽  
Mohammad Saeed Seif

One of the phenomena restricting the tanker navigation in shallow waters is reduction of under keel clearance in the terms of sinkage and dynamic trim that is called squatting. According to the complexity of flow around ship hull, one of the best methods to predict the ship squat is experimental approach based on model tests in the towing tank. In this study model tests for tanker ship model had been held in the towing tank and squat of the model are measured and analyzed. Based on experimental results suitable formulae for prediction of these types of ship squat in fairways are obtained.


2021 ◽  
Author(s):  
Li Zhang ◽  
Lei Xing ◽  
Mingyu Dong ◽  
Weimin Chen

Abstract Articulated pusher barge vessel is a short-distance transport vessel with good economic performance and practicability, which is widely used in the Yangtze River of China. In this present work, the resistance performance of articulated pusher barge vessel in deep water and shallow water was studied by model tests in the towing tank and basin of Shanghai Ship and Shipping Research Institute. During the experimental investigation, the articulated pusher barge vessel was divided into three parts: the pusher, the barge and the articulated pusher barge system. Firstly, the deep water resistance performance of the articulated pusher barge system, barge and the pusher at design draught T was studied, then the water depth h was adjusted, and the shallow water resistance at h/T = 2.0, 1.5 and 1.2 was tested and studied respectively, and the difference between deep water resistance and shallow water resistance at design draught were compared. The results of model tests and analysis show that: 1) in the study of deep water resistance, the total resistance of the barge was larger than that of the articulated pusher barge system. 2) for the barge, the shallow water resistance increases about 0.4–0.7 times at h/T = 2.0, 0.5–1.1 times at h/T = 1.5, and 0.7–2.3 times at h/T = 1.2. 3) for the pusher, the shallow water resistance increases about 1.0–0.4 times at h/T = 2.7, 1.2–0.9 times at h/T = 2.0, and 1.7–2.4 times at h/T = 1.6. 4) for the articulated pusher barge system, the shallow water resistance increases about 0.2–0.3 times at h/T = 2.0, 0.5–1.3 times at h/T = 1.5, and 1.0–3.5 times at h/T = 1.2. Furthermore, the water depth Froude number Frh in shallow water was compared with the changing trend of resistance in shallow water.


Author(s):  
Liviu Crudu ◽  
Radu Bosoancă ◽  
Dan Obreja

The evaluation of ship resistance is of paramount importance having a decisive impact on the economic performances and efficiency depending on mission. If new IMO requirements through the Energy Efficiency Design Index (EEDI) are taken into account the necessity to have more and more accurate tools capable to consider the influences of different parameters became mandatory. The availability of towing tank facilities and the full scale trials are the practical means in order to be able to confirm the accuracy of theoretical formulations and to define the limits of CFD applications. Based on the results of the towing tank tests, a direct comparison with the results provided by classical methods and CFD computations can be systematically can be performed. On the other hand, the influences of the modifications operated on the fore part of the ship aretheoretically evaluated and compared with the towing tank results. Consequently, the paper is focused on the comparison of the results evaluated using different tools which have been carried out for a Chemical Tanker built by Constanta Shipyard Romania.


2017 ◽  
Vol 4 (1) ◽  
pp. 60 ◽  
Author(s):  
Hasdaryatmin Djufri

Scouring occurs along the streams and generally increases in their bend areas. This occurence threaten the stability of buildings and facilities built around those areas. This study was conducted by experimental model tests in a laboratory using an artificial channel made of sand with diameter of 0,47 mm and the sand layer density of 1,47 gr/cm3. To assess the effect of river bends on the extent of scours, the water flow was simulated on the artificial channel in 9 times i.e.; 3 variations in the angle of river bends (α) and 3 variations in the flow discharge (Q) for each river bend variation. This study revealed that the volume of scours positively correlated to the angle of river bends. The volume of scours decreased more 20% when the angle of river bends decresed from 60º to 30º. The increase of the flow discharge also enlarged the volume of scours more than 100% at the river bends with small angles


2018 ◽  
Vol 24 (1) ◽  
pp. 152-165 ◽  
Author(s):  
Xide Cheng ◽  
Baiwei Feng ◽  
Haichao Chang ◽  
Zuyuan Liu ◽  
Chengsheng Zhan

2018 ◽  
Vol 159 ◽  
pp. 02058
Author(s):  
Deddy Chrismianto ◽  
Kiryanto ◽  
Berlian Arswendo Adietya

Ship resistance is one of the main factors affecting the design of a ship. Catamaran boat is a ship with small wet surface area that able to reduce drag and improve ship power. Generally, a bulbous bow is implemented to reduce wave resistance because the bulbous shape is believed to attenuate the bow wave system. Additionally, the bulbous bow also tends to reduce viscous resistance. When the flow around the body is smooth, the total ship resistance can be reduced significantly if the optimum bulbous bow is obtained. In this study, the main purpose is to get the bulbous bow shape in catamaran boat which produces the smallest ship resistance by using computational fluid dynamic (CFD). Generating the variation of the bulbous bow shapes apply the one-to-one correspondence of the cross section parameter (ABT) and lateral parameter (ABL). The result of investigation shows that application of bulbous bow on catamaran boat can reduce about 11-13% of total resistance of ship.


Sign in / Sign up

Export Citation Format

Share Document