scholarly journals ANALISIS KUALITAS DAYA PADA SUPLAI DAYA LISTRIK PT. SOSRO

2020 ◽  
Vol 1 (1) ◽  
pp. 27-33
Author(s):  
Aceng Daud Energi

In more than ten years, quality of electricity has growed from clearness to be an principal issue. One heavy problems from quality of power is harmonic distortion and its consequences. Particularly, the increasing of penetration of loads bases on power electronics (non-linear load) what creates a harmonic distortion in AC power systems. Then, quality of electricity becomes principal issue for utility and its consumer and both swiftly adopts philosophy and proposes limits in new international standard (IEC, EN, BS, IEEE). As consequence the equipments of power conditioning (converter) will become more important for electrical utility and its consumer. From the results with the data logger recording at PT SOSRO distribution feeder system found that there are several current and voltage harmonics are significant in the load and hence the supply side. Fifth and the seventh Harmonic are heaviest harmonic components in the current load. Installation of passive filters will be one solution to overcome the issue with the current harmonics. The recomendation proposed will be submitted to management for consideration PT SOSRO factory in determining which type of passive filter will be used.

Author(s):  
Refdinal Nazir ◽  
Krismadinata Krismadinata ◽  
Rizka Amalia

In this paper, the harmonic distortion for Self-Excited Induction Generator (SEIG) and an isolated synchronous generator (ISG) under non-linear load during steady state conditions are analyzed. The voltage and current harmonics distortion for both generators are calculated using the transfer function method in frequency domain for SEIG and phasor diagram method for ISG. This analysis is done independently one by one component for all harmonic components appear. The analysis results for both generators are verified to the laboratory test results. For loading with the same non-linear load to both generators, the harmonics distortion on the stator windings of SEIG was smaller than compare ISG. In addition, the harmonic distortion effects on other loads connected to PCC point of SEIG was lower than the other loads connected to ISG.


2021 ◽  
Vol 878 (1) ◽  
pp. 012059
Author(s):  
F Susanto ◽  
E M Silalahi ◽  
S Stepanus ◽  
B Widodo ◽  
R Purba

Abstract This paper discusses the design of a passive filter system for Energy-Saving Lamps (LHE) and Light Emitting Diodes (LED) using the MATLAB Simulink software. This type of lamp is a type of non-linear load that produces harmonics of current and voltage. However, this harmonic problem can be reduced using passive filters. To determine the size of the passive filter components, research was carried out in the form of measurements of power, power factor, voltage, current, THDi and THDv produced by the LHE and LED. The results of these measurements were simulated using MATLAB Simulink to determine the passive filter design that reduces the THD value on the LHE and LED. To reduce the level of current harmonics, a single tuned LC passive filter was designed. The filter, designed to work at a frequency of 50 Hz and is expected to reduce the level of harmonics in the 3rd, 5th, 7th, 9th, 11th harmonic orders so that the THD produced by LHE and LED meets the IEEE 519-2014 standards. The simulation results of single tuned LC passive filter design can reduce THDi by 46.78% from the initial THD of 84.55% so that it becomes 37.77%.


2021 ◽  
Vol 7 (1) ◽  
pp. 71-76
Author(s):  
Catra Indra Cahyadi ◽  
I Gusti Agung Ayu Mas Oka ◽  
Yanti Daryanti

Beban non linier yang belum berbentuk gelombang sinusoidal telah terdistorsi oleh distorsi harmonisa arus. Beban non linier merupakan salah satu penyebab timbulnya distorsi yang dapat mengakibatkan kualitas daya listrik semakin buruk. Paper ini membahas hasil simulasi penggunaan filter tunggal yang disetel untuk mengurangi distorsi yang disebabkan oleh beban non linier akibat personal computer dan printer untuk pencetakan. Pengukuran menggunakan alat power quality analyzer fluke. Hasil pengukuran terhadap 4 merk PC yang berbeda menunjukan bahwa nilai beban non linier yang dihasilkan mengalami penurunan. Beban personal komputer merk A dari THDi sebesar 120,7 % menurun menjadi 110,8% , merk B dari THDi sebesar 121,9% menjadi 109,9 %, merk C dari THDi sebesar 150,1% menurun menjadi 100,2 %, merk D dari THDi sebesar 176,2% menurun menjadi 104,1 %. Penurunan total harmonic distorsion arus setelah direduksi sebesar 0,8 – 1 %. Penggunaan filter berhasil menurunkan nilai THDi. Non-linear loads that have not been in the form of sinusoidal waves have been distorted by current harmonic distortion. Non-linear loads, one of the causes of distortion can cause the quality of electric power to get worse. Research on the simulation method uses a single filter as a filter that is adjusted to reduce distortion caused by non-linear loads using personal computers and printers for printing machines. Where the measurement uses a Fluke Power quality analyzer, the resulting non-linear load value is obtained on non-linear loads with personal computer loads brand A has a THDi of 120.7% decreasing to 110.8%, brand B THDi of 121.9% becomes 109.9%, the C THDi brand by 150.1% decreased to 100.2%, the D THDi brand by 176.2% decreased to 104.1% where the decrease in the total harmonic current distortion after reduction was 0.8 - 1%. The use of a filter was successful in lowering the THDi value.


2020 ◽  
Vol 5 (1) ◽  
pp. 149-163
Author(s):  
Haider Muhamad Husen ◽  
Salar Ahmed Qadir

Unbalanced input source voltages generate extra current harmonics in addition to non-linear loads which distorts the power quality in the entire power systems. Three-phase multi-level neutral point clamped (NPC) converter based shunt active harmonic filter (SAHF) are used as a solution to overcome problems due to current harmonics. In this work, synchronous reference frame (d-q) algorithm is selected to detect the harmonic current components, Proportional-integral (PI) controller is utilized to ameliorate the storage of energy in the dc-link capacitor and the multilevel space vector pulse width modulation (MSVPWM) strategy determines the switching pulses of NPC inverter. Under balanced input supply voltages condition, the proposed MSVPWM achieved a mitigation of source current THD of 3.58 % as compared to 28.57 % prior to compensation on non-linear load. Furthermore, the MSVPWM technique was compared with and without compensation under unbalanced input source voltages and the results shows that the proposed method achieved reduction in source current THD of 3.96 % as compared to 29.76 % after and before compensation respectively. The proposed MSVPWM based-SAPF model was also compared with conventional SVPWM under balanced and unbalanced input supply voltages conditions. The results show that MSVPWM performed better than CSVPWM. The simulated results obtained by MATLAB/SIMULINK power system environment. All the results for the presented work are within IEEE-519 harmonics standard with non-linear loads under balanced and unbalanced voltages condition. 


Author(s):  
Luis Delgado-Ponce ◽  
Oscar Joel Vargas-Hernández ◽  
Arturo Martínez-Magdaleno ◽  
Luis Martín Menéndez-Benavente

The electric power that generators supply to users (in Mexico, CFE), requires specifications for the safe and efficient operation of equipment and machinery. An important part of an interconnected photovoltaic system is the inverter and because it is a non-linear load, it will inevitably distort the voltage sine wave, whose components can be harmful for the aforementioned equipment, depending on the degree of total harmonic distortion that results from the operation of these investers The problem of the harmonics originated by the SFVI increases because of two situations: 1. The current trend of the use of this type of systems is increasing, due to the economic, environmental and social benefits. 2. the way of connection for SFVI called distributed generation, produce electricity close to the end users of power, means the harmonic components of the distorted wave will have greater impact. This study of harmonic distortion generated in the invester, it is urgent to analyze and determine procedures and specifications to select the best equipment and to minimize this latent phenomenon, which unfortunately can not be eliminated, but only to reduce its effects.


Author(s):  
Pushpanjali Shadangi ◽  
Sushree Diptimayee Swain ◽  
Pravat Kumar Ray ◽  
Gayadhar Panda

Abstract This paper elaborates a hybrid synchronous reference frame method has been proposed for the distribution static compensator (DSTATCOM) to enhance the compensation performance. This controller is designed in such a way that it generate the reference with respect to the change in load to reject the harmonics. Furthermore, a hysteresis controller is employed for switching pattern generation. Fuzzy logic controller is also implemented in MATLAB/simulink environment here to analyze the total harmonic distortion. Experimental analysis of the DSTATCOM demonstrates the potency and reliability of proposed controller over existing control strategy in the from of total harmonic distortion.


Author(s):  
Saber M. Saleh ◽  
Mohamed E. Arafa

Harmonics in electrical networks occur as a result of non-linear loads.  It has an effect on power factor improvement using capacitors in terms of increasing the unbalance current between units. In addition, the occurrence of resonance and result in the exit of capacitors from service by the protective relays to protect the units from collapse. The main objective of this research is the real-time study of improving the power factor with reducing the effect of the resonance and harmonics on the power system. This reduction can be done using filters, consist of reactors and capacitors connected in series or in parallel or series and parallel together to reduce the current harmonics or voltage harmonics. Single Tuned filter type (passive filter) is used which presents very low impedance at the tuning frequency, through which all current of that particular frequency will be diverted. This research presents two practical power systems 11kV source in Fayoum substation and 13.8kV source in New Badr substation connected to power factor Improvement circuit. These models simulated by Matlab at different unbalance currents and harmonics. Also, it presents the design of the series reactor and the harmonics filter which satisfy the minimum effect of resonance and harmonics.


Author(s):  
R. A. Rani ◽  
Shakir Saat ◽  
Yusmarnita Yusop ◽  
Huzaimah Husin ◽  
F. K. Abdul Rahman ◽  
...  

This paper presents the effect of total harmonic distortion (THD) in power factor correction (PFC) at non-linear load. This study focuses on the relationship between THD and PFC. This is beacuse,the power factor affects THD. This occurs in power system as we have variety of loads, i. e linear load or non-linear load. The variety of loads will influence the sinusoidal waveform, which comes out from harmonic distortion. Thus, based on this study, we can compare the effective method in improving the power factor as it will not disturb the performance of THD. The focus of study is on the single phase load, where the voltage restriction is 240 V.  The analysis will  only focus on the consumer, which depends on the variety of non-linear load. Besides, the parameters for analysis are based on the percentage of THD and the value of power factor. The instrument for measuring the parameter is based on power factor correction device or technique. On the other hand, the method that was used for this study is based on simulation which incorporated the Multisim software. At the end of ths study, we can choose the most effective method that can be used to improve the power factor correction without disturbing the THD.


Sign in / Sign up

Export Citation Format

Share Document