scholarly journals Efficient use of electric energy in homes through multi-agent systems, case study Monterrey N.L., Mexico

Author(s):  
Jesús Alejandro Ramos-Nolzaco ◽  
Alicia Elena Silva-Avila ◽  
Jesús Abraham Castorena-Peña ◽  
Ramón Felipe Brenda-Pinero

This article presents an experimental research whose objective is to verify through experimentation if the systems for air conditioning and lighting homes based on the use of Multi- Agent Systems (MAS) are more efficient than traditional systems in terms of perceived environmental comfort. by people and the electricity cost generated. The proposed methodology involved the development of a housing simulator, the definition of the “environmental comfort” variable, the description of the evaluated lighting and air conditioning systems, and the definition of the proposed experiments based on independent variables that could impact on the performance of the aforementioned systems. Based on the data obtained when conducting the experiments and taking the homes in the Monterrey Metropolitan Area as a case study, it could be observed that the use of MAS is a very good alternative to reduce the consumption of electrical energy in homes taking care of not sacrificing people's comfort, thus helping to reduce the ecological impact generated by electricity generation.

2021 ◽  
Vol 10 (2) ◽  
pp. 27
Author(s):  
Roberto Casadei ◽  
Gianluca Aguzzi ◽  
Mirko Viroli

Research and technology developments on autonomous agents and autonomic computing promote a vision of artificial systems that are able to resiliently manage themselves and autonomously deal with issues at runtime in dynamic environments. Indeed, autonomy can be leveraged to unburden humans from mundane tasks (cf. driving and autonomous vehicles), from the risk of operating in unknown or perilous environments (cf. rescue scenarios), or to support timely decision-making in complex settings (cf. data-centre operations). Beyond the results that individual autonomous agents can carry out, a further opportunity lies in the collaboration of multiple agents or robots. Emerging macro-paradigms provide an approach to programming whole collectives towards global goals. Aggregate computing is one such paradigm, formally grounded in a calculus of computational fields enabling functional composition of collective behaviours that could be proved, under certain technical conditions, to be self-stabilising. In this work, we address the concept of collective autonomy, i.e., the form of autonomy that applies at the level of a group of individuals. As a contribution, we define an agent control architecture for aggregate multi-agent systems, discuss how the aggregate computing framework relates to both individual and collective autonomy, and show how it can be used to program collective autonomous behaviour. We exemplify the concepts through a simulated case study, and outline a research roadmap towards reliable aggregate autonomy.


2009 ◽  
Vol 90 (11) ◽  
pp. 3607-3615 ◽  
Author(s):  
Paolo C. Campo ◽  
Guillermo A. Mendoza ◽  
Philippe Guizol ◽  
Teodoro R. Villanueva ◽  
François Bousquet

Author(s):  
Carole Bernon ◽  
Valérie Camps ◽  
Marie-Pierre Gleizes ◽  
Gauthier Picard

This chapter introduces the ADELFE methodology, an agent-oriented methodology dedicated to the design of systems that are complex, open, and not well-specified. The need for its development is justified by the theoretical background given in the first section, which also gives an overview of the concepts on which multi-agent systems developed with ADELFE are based. A methodology is composed of a process, a notation, and tools. Tools are presented in the second section and the process in the third one, using an information system case study to better visualize how to apply this process.


2015 ◽  
Vol 7 (2) ◽  
pp. 105-134
Author(s):  
Bouneb Messaouda ◽  
Saïdouni Djamel Eddine

This paper proposes a new hierarchical design method for the specification and the verification of multi agent systems (MAS). For this purpose, the authors propose the model of Refinable Recursive Petri Nets (RRPN) under a maximality semantics. In this model, a notion of undefined transitions is considered. The underlying semantics model is the Abstract Maximality-based Labeled Transition System (AMLTS). Hence, the model supports a definition of a hierarchical design methodology. The example of goods transportation is used for illustrating the approach. For the system assessment, the properties are expressed in CTL logic and verified using the verification environment FOCOVE (Formal Concurrency Verification Environment).


Author(s):  
Sofia Kouah ◽  
Djamel Eddine Saïdouni

For developing large dynamic systems in a rigorous manner, fuzzy labeled transition refinement tree (FLTRT for short) has been defined. This model provides a formal specification framework for designing such systems. In fact, it supports abstraction and enables fuzziness which allows a rigorous formal refinement process. The purpose of this paper is to illustrate the applicability of FLTRT for designing multi agent systems (MAS for short), among others collective and internal agent's behaviors. Therefore, Contract Net Protocol (CNP for short) is chosen as case study.


Author(s):  
Haibin Zhu ◽  
MengChu Zhou

Agent system design is a complex task challenging designers to simulate intelligent collaborative behavior. Roles can reduce the complexity of agent system design by categorizing the roles played by agents. The role concepts can also be used in agent systems to describe the collaboration among cooperative agents. In this chapter, we introduce roles as a means to support interaction and collaboration among agents in multi-agent systems. We review the application of roles in current agent systems at first, then describe the fundamental principles of role-based collaboration and propose the basic methodologies of how to apply roles into agent systems (i.e., the revised E-CARGO model). After that, we demonstrate a case study: a soccer robot team designed with role specifications. Finally, we present the potentiality to apply roles into information personalization.


Author(s):  
FRANCO ZAMBONELLI ◽  
NICHOLAS R. JENNINGS ◽  
MICHAEL WOOLDRIDGE

Multi-agent systems can very naturally be viewed as computational organisations. For this reason, we believe organisational abstractions offer a promising set of metaphors and models that can be exploited in the analysis and design of such systems. To this end, the concept of role models is increasingly being used to specify and design multi-agent systems. However, this is not the full picture. In this paper we introduce three additional organisational concepts — organisational rules, organisational structures, and organisational patterns — and discuss why we believe they are necessary for the complete specification of computational organisations. In particular, we focus on the concept of organisational rules and introduce a formalism, based on temporal logic, to specify them. This formalism is then used to drive the definition of the organisational structure and the identification of the organisational patterns. Finally, the paper sketches some guidelines for a methodology for agent-oriented systems based on our expanded set of organisational abstractions.


2005 ◽  
Vol 20 (2) ◽  
pp. 165-189 ◽  
Author(s):  
GIOVANNA DI MARZO SERUGENDO ◽  
MARIE-PIERRE GLEIZES ◽  
ANTHONY KARAGEORGOS

This paper is the synthesis of joint work realised in a technical forum group within the AgentLink III NoE framework, which elaborated on issues concerning self-organization and emergence in multi-agent systems (MAS). The work concluded on a common definition of the concepts of self-organization and emergence in MAS and the associated properties and characteristics. Also it developed towards an approach for selecting self-organization mechanisms using a number of selected reference case studies and a set of evaluation criteria.


Sign in / Sign up

Export Citation Format

Share Document