scholarly journals BAYKAL and TRANSBAIKALIA

Author(s):  
Valentina Melnikova ◽  
N. Gileva ◽  
O. Masalskii

The seismicity of Pribaikalye and Transbaikalia in 2013 is reviewed. 6706 earthquakes with КР≥5.6 were recorded there during that year. Most of them (92 %) are located in the Baikal rift zone. The high degree of clustering of seismic events is observed in South Baikal and Baikal-Muja areas. The largest earthquake with Mw=4.3 was in the Baikal-Muja area. Focal mechanisms of 47 earthquakes (КР9.6) were determined in 2013. Most of them correspond to normal faults, with strike-slip component contribution in some cases. Overall, the rate of seismic activity observed in Pribaikalye and Transbaikalia in 2013 was low.

2021 ◽  
Vol 12 (3) ◽  
pp. 544-562
Author(s):  
E. G. Vologina ◽  
M. Sturm ◽  
Ya. B. Radziminovich

Sedimentation in Lake Baikal is significantly affected by continuous seismic activity in the Baikal Rift Zone. Our study shows that historical earthquakes, as well as recent seismic events, considerably influenced sedimentation in this deep tectonic basin. Here we present some of the results of extensive international research activities during the period of 1996–2019. To identify traces of seismic events in the uppermost sediments (<1.5 m), short cores were recovered from many coring stations throughout the entire lake. Based on lithological descriptions, measurements of magnetic susceptibility, and concentration of inorganic and organic components, we identified earthquake indicators in the sediment cores. Impacts of historical earthquakes were traced within South Baikal (near the Sharyzhalgai Station and the Station 106-km of the Circum-Baikal railway, hereafter CBR) and Proval Bay (near the Selenga River delta).


2015 ◽  
Vol 1 (3) ◽  
pp. 55-61 ◽  
Author(s):  
Ольга Кочеткова ◽  
Olga Kochetkova ◽  
Александр Михалев ◽  
Aleksandr Mikhalev ◽  
Владимир Мордвинов ◽  
...  

We study the troposphere dynamics, temperature regime in the stratosphere, upper atmosphere emission, and seismic activity in the Baikal Rift Zone for winters 2011/2012 and 2012/2013. Variations of the lithospheric, tropospheric, stratospheric and mesosphe- ric characteristics occurred either simultaneously or with a time lag during these periods. We found that the wind speed in the lower atmosphere reached a maximum several days before the seismic activity increase in the region. Then, it de-creased to a minimum at the earthquake instant. The periods of this seismic activity growth coincided with episodes of stratospheric warm-ings and with an increase in the 557.7 nm atmospheric emission in the meso-sphere and the low thermosphere (85–115 km). A pos-sible reason for the correlations may be the increased atmospheric effects on mountains, the formation of vertical flows above mountains, and generation of planetary and gravity waves.


2021 ◽  
Vol 62 (2) ◽  
pp. 239-254
Author(s):  
A.V. Klyuchevskii ◽  
V.I. Grebenshchikova ◽  
M.I. Kuz’min ◽  
V.I. Dem’yanovicha ◽  
A.A. Klyuchevskaya

Abstract —The results of Hg content determination in the water of the Angara River source are considered in relationship with the seismic processes proceeding at different levels of the lithosphere in the Baikal Rift Zone (BRZ), the geodynamic rejuvenation of the South Baikal rifting attractor structure (RAS), and the time distribution of M ≥ 7 earthquakes which occurred at a significant distance from the water sampling station. The correlation coefficients calculated between the pairs Hg content–earthquake numbers n and Hg–logarithm of summary seismic energy lgΣES are most often low, thus indicating the absence of a statistically meaningful relationship between the remote seismic process and the dynamics of mercury release. However, the correlation coefficients in the vicinity of the Angara River source are high, thus proving the relationship of the mercury release with the deformation of this territory. The statistical validity of the «deformation–mercury release» cause-and-effect relationship is verified by the fact that strong geodynamic impacts precede all meaningful Hg release maxima. In the period 1997–1998, the South Baikal RAS produced the highest impact, being in the phase of the maximum geodynamic activity. The combined impact of the RAS and the South Baikal earthquake of 1999 resulted in a series of the maximum mercury contents within 1999–2000. The subsequent gradual relaxation of the RAS activity led to a reduction in the average annual Hg content. Remote M ≥ 7 earthquakes and close strong earthquakes of the BRZ are responsible for the significant Hg release maxima. The predicted trend of the average annual Hg contents is their considerable increase in the fields of fluid discharge of faults under the powerful geodynamic impact of the RAS or strong earthquake. We assume that in the study lithosphere area, the powerful geodynamic impact caused an opening of fault zones leading to decompression with boiling and degassing of mercury and its rapid rise to the surface.


Author(s):  
A. V. Belyashov ◽  
Ts. A. Tubanov

Whereas the defined velocity model plays a key role in the process of seismic events localization, so selection of the model as much as possible corresponding to the real velocity conditions of the investigated area becomes a crucial task. Basing on the analyses of published results of the Lake Baikal area seismic study a layered P-waves models for two situations defined: For the high velocity consolidated rock on the lake banks and low velocity sediments up to 10 km thick under the lake bottom.


2018 ◽  
Vol 9 (4) ◽  
pp. 1099-1126 ◽  
Author(s):  
T. N. Kangarli ◽  
F. A. Kadirov ◽  
G. J. Yetirmishli ◽  
F. A. Aliyev ◽  
S. E. Kazimova ◽  
...  

Our study was focused on the active tectonics of the southern slope of the Greater Caucasus within Azerbaijan. The study area is the zone of under-thrusting (pseudosubduction) interaction between Southern and Northern Caucasus continental microplates, which caused the tectonic stratification of the Alpine formations into various allochthonous and parauthochthonous thrust slices of southern vergency between the Middle Bajocian and Quaternary periods. These slices are grouped into the nappe complexes that form the modern structure of the trough in the study area. The large linearly stretched tectonic units (megazones) correspond to the axis of the Alpine marginal sea basin, the consolidated crust of which is subjected to destruction and thinning. The trough’s Alpine cover was compressed in the underthrust zone and pushed southwards. As a result, an accretionary prism formed allochthonously overlapping the northern side of the Southern Caucasus microplate by the system of gently dipping overthrusts. During the continental stage of Alpine tectogenesis (starting from the end of Miocene), intensive lateral compression process was caused by intrusion of the frontal wedge of the Arabian indenter into the buffer structures of the southern frame of Eurasia. This is evidenced by the GPS monitoring data on modern geodynamic activity, which demonstrates the Southern Caucasus block’s intensive (up to 29 mm/year) intrusion in the northern rhumbs as compared to the relative stability of the Northern Caucasus microplate (0–6 mm/year). This, in turn, is a reflection of the ongoing pseudosubduction regime (continental subduction or S-subduction) at the band of collision junction of these microplates. It is suggested that this process caused historically observed seismic activity in the study area, wherein the earthquakes occurred mainly in the southern slope’s accretionary prism area and the adjacent strip of the Southern Caucasus microplate. In this article, we analyze and correlate the whole range of seismic events that occurred in the study area until 2017 and the focal mechanisms of the recently recorded earthquakes (2012–2016). It is established that earthquake foci are confined either to the intersection nodes of variously trending ruptures with the faults of different directions or to the planes of deep tectonic ruptures and lateral displacements along the unstable contacts between the material complexes with different competence. The focal mechanisms of seismic events reveal various, mostly near-vertical, planes of normal and strike-slip faults. However, the earthquake foci are generally confined to the intersection nodes between the Caucasus and anti-Caucasus-striking rupture dislocations. The results of our studies are interesting in terms of their real-time application for drawing a regional summary of causes for both geodynamic and seismic activity of the Greater Caucasus system and the adjacent areas of Alpine-Himalayan fold belt.


Author(s):  
T. Fokina ◽  
D. Safonov ◽  
D. Kostylev ◽  
V. Mikhaylov

A review of the Sakhalin seismicity in 2014 based on the data of regional network is given. The network included four stationary and ten temporary digital seismic stations. This network was supported by ten stations of local network operating in the south of Sakhalin. Parameters of 450 seismic events, including 25 explosions, and focal mechanisms for 4 events are determined. 22 earthquakes had a macroseismic effect. The map of earthquake completeness and the map of epicenters are given. The distribution of crust and deep earthquakes on magnitude and their summarized energy for seven seismoactive areas in comparison with average parameters for 2001–2013 are presented. For each area and the region as a whole, an analysis of the seismic regime parameters in 2014 in comparison with long-term parameters is given, tangible and strong earthquakes are described. The seismicity of the Sakhalin region in 2014 can be characterized as a moderate one. Somewhat increased seismic activity was recorded in the East Sakhalin and Southeastern areas.


Author(s):  
V. Melnikova ◽  
N. Gileva ◽  
A. Seredkina ◽  
Ya. Radziminovich

We consider two earthquakes occurred at the south-western flank of the Baikal rift zone (BRZ): Urik, November 1, 2014 (Mwreg=4.6) and Hovsgol, December 5, 2014 (Mwreg=4.9). First of them is localized within the area of the Main Sayan fault, the second one is located at the north of the Hovsgol Lake. Seismic moment tensors (focal mechanisms, scalar seismic moments, moment magnitudes and hypocentral depths) of the study seismic events were calculated based on surface wave amplitude spectra. Earthquake hypocenters were found to be situated in the middle crust (h=14–21 km). Both events occurred under the strike-slip stress-strain field. The strike-slip was combined with a normal fault component in the source of the Urik earthquake and with a thrust fault component in the source of the Hovsgol earthquake. In both cases, shaking intensity in the nearest settlements (=42–124 km) was less than 4–5. Analysis of historical seismicity, seismological data on the Urik and Hovsgol earthquakes and the tectonic position of their sources demonstrates that the considered events are typical for the south-western flank of the BRZ and confirms the existence of the transition zone from rift structures at the central parts of the BRZ to regional compression structures in Northern Mongolia.


Sign in / Sign up

Export Citation Format

Share Document