scholarly journals Assessment of the Rozhaika Small River (Moscow Region) Ecological Status

Author(s):  

Results of research of water quality and conditions of the Rozhaika, small river of Moscow Region, ecosystem elements and moth parts of its tributaries have been presented. Water bodies mostly affecting the main watercourse conditions and demanding urgent development of measures aimed to improvement of their conditions ranking has been carried out.

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 433
Author(s):  
Laima Česonienė ◽  
Midona Dapkienė ◽  
Petras Punys

Hydropower plants produce renewable and sustainable energy but affect the river’s physico-chemical characteristics and change the abundance and composition of the aquatic organisms. The impact of large HPPs on the ecological conditions of surface water bodies have been extensively studied, but less attention has been paid to environmental impact studies of small hydropower plants (SHPs). The impact of hydropeaking on both the river flow regime and ecosystems has been well-studied for peaking mode plants, mainly medium to large-sized ones. However, for small hydroelectric power plants, and especially for those in lowland rivers, the available information on water quality, benthic macroinvertebrates communities and fish abundance, and biomass is not sufficient. Ten small hydropower plants were selected, and the ecological status of water bodies was assessed in different parts of Lithuania. The studies were performed at the riverbed upstream from the SHPs, where the hydrological regime has not changed, and downstream from the SHPs. It was found that the small hydropower plants do not affect the physico-chemical values of the water quality indicators. This study demonstrated that the total number of benthic macroinvertebrates taxa (TS) is influenced by the concentration of nitrogen and suspended solids, the water flow, the river area, and the current speed; the number of EPT (Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies)) taxa is influenced by the concentration of nitrogen and suspended solids. The studied indicators do not have a significant impact on biomass. The SHPs affect the fish abundance and biomass. The Lithuanian fish index (LFI) is influenced by the average depth and area of the river. Some SHPs operating in lowland areas may yield somewhat significant hydrograph ramping but more detailed investigation is needed to support the significance of this impact on the biological indices.


2020 ◽  
Author(s):  
Dainis Jakovels ◽  
Agris Brauns ◽  
Jevgenijs Filipovs ◽  
Tuuli Soomets

<p>Lakes and water reservoirs are important ecosystems providing such services as drinking water, recreation, support for biodiversity as well as regulation of carbon cycling and climate. There are about 117 million lakes worldwide and a high need for regular monitoring of their water quality. European Union Water Framework Directive (WFD) stipulates that member states shall establish a programme for monitoring the ecological status of all water bodies larger than 50 ha, in order to ensure future quality and quantity of inland waters. But only a fraction of lakes is included in in-situ monitoring networks due to limited resources. In Latvia, there are 2256 lakes larger than 1 ha covering 1.5% of Latvian territory, and approximately 300 lakes are larger than 50 ha, but only 180 are included in Inland water monitoring program, in addition, most of them are monitored once in three to six years. Besides, local municipalities are responsible for the management of lakes, and they are also interested in the assessment of ecological status and regular monitoring of these valuable assets. </p><p>Satellite data is a feasible way to monitor lakes over a large region with reasonable frequency and support the WFD status assessment process. There are several satellite-based sensors (eg. MERIS, MODIS, OLCI) available specially designed for monitoring of water quality parameters, however, they are limited only to use for large water bodies due to a coarse spatial resolution (250...1000 m/pix). Sentinel-2 MSI is a space-borne instrument providing 10...20 m/pix multispectral data on a regular basis (every 5 days at the equator and 2..3 days in Latvia), thus making it attractive for monitoring of inland water bodies, especially the small ones (<1 km<sup>2</sup>). </p><p>Development of Sentinel-2 satellite data-based service (SentiLake) for monitoring of Latvian lakes is being implemented within the ESA PECS for Latvia program. The pilot territory covers two regions in Latvia and includes more than 100 lakes larger than 50 ha. Automated workflow for selecting and processing of available Sentinel-2 data scenes for extracting of water quality parameters (chlorophyll-a and TSM concentrations) for each target water body has been developed. Latvia is a northern country with a frequently cloudy sky, therefore, optical remote sensing is challenging in or region. However, our results show that 1...4 low cloud cover Sentinel-2 data acquisitions per month could be expected due to high revisit frequency of Sentinel-2 satellites. Combination of C2X and C2RCC processors was chosen for the assessment of chl-a concentration showing the satisfactory performance - R<sup>2</sup> = 0,82 and RMSE = 21,2 µg/l. Chl-a assessment result is further converted and presented as a lake quality class. It is expected that SentiLake will provide supplementary data to limited in situ data for filling gaps and retrospective studies, as well as a visual tool for communication with the target audience.</p>


2016 ◽  
Vol 73 (10) ◽  
pp. 2413-2421
Author(s):  
C. Stoica ◽  
J. Camejo ◽  
A. Banciu ◽  
M. Nita-Lazar ◽  
I. Paun ◽  
...  

Environmental issues have a worldwide impact on water bodies, including the Danube Delta, the largest European wetland. The Water Framework Directive (2000/60/EC) implementation operates toward solving environmental issues from European and national level. As a consequence, the water quality and the biocenosis structure was altered, especially the composition of the macro invertebrate community which is closely related to habitat and substrate heterogeneity. This study aims to assess the ecological status of Southern Branch of the Danube Delta, Saint Gheorghe, using benthic fauna and a computational method as an alternative for monitoring the water quality in real time. The analysis of spatial and temporal variability of unicriterial and multicriterial indices were used to assess the current status of aquatic systems. In addition, chemical status was characterized. Coliform bacteria and several chemical parameters were used to feed machine-learning (ML) algorithms to simulate a real-time classification method. Overall, the assessment of the water bodies indicated a moderate ecological status based on the biological quality elements or a good ecological status based on chemical and ML algorithms criteria.


2019 ◽  
Vol 135 ◽  
pp. 01051
Author(s):  
Valentina Kurochkina

The growing race of urbanization and population growth lead to anthropogenic load on the water is increasing all the time. High population density and considerable industrial potential of the urbanized territory are becoming dominant sources of pollution of water bodies. This trend identifies progressive pollution of water bodies and the growing need for sanitary-ecological status of water control facilities. Natural chemical composition and properties of water in surface water bodies are formed depending on the hydrological, soil, climate and other features. Flowinduced suspensions in urban watercourses is one of the main ways of contamination distribution in urbanized areas. For monitoring and reducing the negative impacts on the water quality of watercourses requires estimation of anthropogenic pressures and studying its spatio-temporal variability. Analysis of anthropogenic stress on water objects allows you to set the relationship between the number of coming in the water body of pollutants and concentrations of chemicals in the water. The main aim is to determine the amounts of contaminants accumulated in the river riverbed during the period of the economic utilization of the watercourse and to assess the impact of urbanization on its ecological status. The article deals with the influence of anthropogenous load on river hydraulics and properties of channel sediments that determine the course of channel processes and overall ecological condition of water objects. The interrelation between water body condition, water quality and sediment pollution is presented. Method of estimation of anthropogenous load pollutants in river of urban area sis proposed. Comparative analysis of the load for the rivers of Russia with various water run-off is demonstrated.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 500
Author(s):  
Laima Česonienė ◽  
Daiva Šileikienė ◽  
Midona Dapkienė

The larger and deeper lakes and ponds are, the better the conditions for spontaneous water purification, slower hydrobiological processes and slower accumulation of sediment. The goal of this research was to assess the ecological status of selected Lithuanian lentic water bodies and the impact of morphometric indicators on water quality. Multiple studies were conducted on 29 lakes and 10 ponds located throughout Lithuania in 2014–2018. The study proved that higher maxima and average depths of lakes correlate with lower Ptotal, Ntotal yield and macrophyte taxonomic composition values, indicating higher ecological status class. Higher chlorophyll a EQR, ichthyofauna taxonomic composition indicator for Lithuanian fish index LFI and Lithuanian lakes’ macroinvertebrate index indicates a higher ecological class. Larger lake areas contain smaller amounts of Ptotal and Ntotal, indicating better ecological status class; higher ichthyophane taxonomic composition in LFI, zoobenthos taxonomic composition indicator for Lithuanian lakes’ macroinvertebrates index (LLMI) and taxonomic composition of macrophytes MRI indicate better ecological status class. Larger lake areas contain lower chlorophyll a EQR values. Rapid water exchange improves the condition of the lake in addition to nitrogen, phosphorus and chlorophyll a EQR values. The faster the water exchange in the lake is, the lower the Ptotal and Ntotal values; faster water exchange in the lake also means higher chlorophyll a EQR values. However, slower water exchange indicates better ecological status of the macrophytic taxonomic composition of the MRI, the ichthyofauna taxonomic composition and the Lithuanian lakes’ macroinvertebrates index indicator of zoobenthos.


2015 ◽  
Vol 69 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Borko Matijevic ◽  
Djendji Vastag ◽  
Milena Becelic-Tomin ◽  
Bozo Dalmacija ◽  
Suzana Apostolov

Monitoring of surface water, through the analysis of physical-chemical and chemical parameters is a very important factor in the control of water quality and the health of living beings. Surface water quality is largely determined by the nature (atmospherics) and anthropogenic processes (discharge of municipal and industrial waste water). The results of monitoring of surface water are usually too expensive and difficult for correct interpreting, due to the spatial and temporal variations in water quality. By applying Multivariate statistical analysis can achieve significant reductions of the ampleness of the available data and the better interpretation of the obtained results about the quality and ecological status/potential of water. In this paper, were analyzed selected results of the analysis of surface water in AP Vojvodina in 2011 year by using multivariate statistical analysis (cluster analysis and principal components analysis). These techniques allow the interpretation of the results of the monitoring program of investigated surface water bodies and simultaneous identification of registered influence and potential sources of pollution on the quality of the given water bodies. With both methods applied and the division of water bodies tested in the same manner at the origin (natural and artificial) and on the basis of territorial belonging monitoring stations (Banat and Backa). Individual variations are discussed in corresponding differences in individual measuring stations in relation to others. Application of the given method, a grouping of the examined indicators of water quality in the following factors: hydro-chemical factor, ecological factor, the factor point pollution and diffusion. The obtained results confirm the initial hypothesis that the use of different statistical methods can identify the main factors that have an impact on the ecological status and ecological potential of water bodies and to improve the existing monitoring. In addition, analysis of the extracted surface water bodies where it is necessary to implement simultaneous monitoring of the biological quality elements to determine whether chemical parameters ensure the functioning of ecosystems.


2019 ◽  
Vol 8 (2) ◽  
pp. 75-80
Author(s):  
Elena Aleksandrovna Shornikova

The following paper deals with a methodical approach and experience of water quality complex index ( Iwq ) use for the evaluation of ecological status of surface water bodies by results of rivers monitoring within the Middle Ob basin during 2002-2018. This index allows to use such primary information as results of water chemistry analyses, parameters of structure of microbial community and other available data obtained for each sample site on various water bodies within the basin. The main evaluation criterion for calculating this index is a degree of a deviation of each controlled indicator from average value of this indicator for all explored water area within the basin. Water bodies (or their sites) can be classified to 5 various classes of water quality using the calculated values of the index. Such a methodical approach allows to carry out comparative estimation of an ecological condition of water bodies and their sites within the area, to map the obtained data, to analyze possible reasons of deterioration of water ecosystem state, to manage decisions on their restoration. The paper presents the results of the water quality complex index use for rivers within the Middle Ob basin, calculated on the base of indicators of the chemical composition of water and number of bacteria of various ecological and trophic groups in the structure of microbial community.


2019 ◽  
Vol 27 (3) ◽  
pp. 422-430
Author(s):  
Mykola М. Kharytonov ◽  
Andriy М. Pugach ◽  
Sergey А. Stankevich ◽  
Anna O. Кozlova

The use of remote sensing methods for environmental monitoring of the surface water quality is proved. Regression relationships are consistent with ground-based measurements at sampling sites in water bodies and are an effective tool for assessing the ecological status of water bodies. The state of the water bodies of the Mokra Sura river basin varies considerably. The best is the water quality in the upper part of the Mokra Sura river, the worst – in the middle and lower parts. The factors of water pollution are discharges of not enough treated wastewater of industrial enterprises of the Kamyans’koy and Dniprovs’koy industrial agglomeration. The purpose of our search included the following tasks: (a) calculation of integrated environmental water quality indices; b) obtaining satellite information, processing of multispectral satellite images of water bodies using appropriate applied software techniques; c) establishment of statistical dependencies between water quality indexes obtained for biotopically space images and data of actual in situ measurements. The results of systematic hydrochemical control of the Mokra Sura river basin from 2007 to 2011 years were initial data in 4 control areas located in the Dnipropetrovsk region: 1 – the Sursko-Litovske village; 2 – the Bratske village; 3 – the Novomykolayvka village; 4 – the Novooleksandryvka village. Environmental assessment of the water quality of the Mokra Sura river within the Dnipropetrovsk region was based on the calculation the integrated environmental index ( IEI ). Priority pollutants in this case are oil products and ions 2−SO 4, 2 + Mg , 2 + Zn , 6 + Cr . Two images with a difference in three years in April 2015 and May 2017 were used to determine the current changes in the land cover of the study area. Geomorphological assessment of the water network of the Morka Sura river was performed using satellite radar interferometry. Multispectral images of Landsat 5/TM (2007-2011) and Sentinel 2B/MSI (2017) satellite systems were used forremote assessment of water bodies in the study area of the Mokra Sura river basin. The multispectral index TCW (Tasseled Cap Wetness) was used to measure the spectral reflection of the aquatic environment along of the Mokra Sura river flow. The main advantage of the studies is a demonstration of remote sensing capabilities to estimate Mokra Sura river ecological status not only in individual sites, but also throughout the flow – from source to mouth. Follow the necessity to use water from the Mokra Sura river for irrigation, the level of soil water erosion can only increase and enhance the negative processes of eutrophication of reservoirs. Long term technogenic pollution requires information about the state of surface water of fishery, drinking and municipal water use facilities as an integral part of the aquatic ecosystem, the habitat of aquatic organisms and as a resource of drinking water supply. Over 80% of the Mokra Sura river basin surface (IEI 4-12) belong to the classes with the assessment of dirty, very and extremely dirty. The results of studies using remote sensing indicate the need to reduce the streams of not enough treated wastewater to the the Mokra Sura river. The obtained data can be used for ecological assessment of the current and retrospective state of water bodies, development of forecasts of rivers pollution.


2019 ◽  
Vol 19 (1) ◽  
pp. 43-48
Author(s):  
Natalia Otchenasch ◽  
Gennadii Dvoryankin ◽  
Ekaterina Imant

Phytoplankton constitutes a key part of all aquatic ecosystems. It produces organic matter, thus forming the first level of food chains in water bodies. In addition, phytoplankton plays a major role in the water quality formation. The studies of algocoenosis always remain relevant, since the obtained data provides important information on the ecological status of water bodies. This information can subsequently be used for planning and implementing environmental measures, which are particularly significant for water bodies located in specially protected areas. National parks existing for the purposes of nature preservation, education and research are also designed for tourism, which makes their ecosystems more vulnerable. Population residing in such territories and its economic activity may also carry some environmental risks, which necessitates regular complex observations. This paper covers the state of spring phytoplankton community of Lake Kenozero in 2018, its qualitative and quantitative characteristics (species composition, abundance and biomass). In the course of research, we identified 70 phytoplankton taxa belonging to seven divisions: Bacillariophyta, Dinophyta, Chlorophyta, Cyanophyta, Chrysophyta, Xanthophyta and Euglenophyta. The dominant species complex included diatoms (Asterionellaformosa, Melosiragranulata, Tabellariafenestrata), representatives of Dinophyta (Gymnodinium sp.), as well as small euglenoids. Species diversity was estimated using the Shannon-Weaver index. Aquatic environment contamination was assessed, i.e. the saprobity index was calculated and the class of surface water quality was determined. According to the water quality classification of water bodies and watercourses by hydrobiological indicators, Lake Kenozero was assigned the second class of water quality (moderately polluted).


Sign in / Sign up

Export Citation Format

Share Document