scholarly journals GRADIENT ALIGNMENT MATERIALS WITH DIFFERENT PHOTOSENSITIVITY FOR TUNABLE POLARIZATION-INDEPENDENT LIQUID CRYSTAL LENS

Doklady BGUIR ◽  
2019 ◽  
pp. 13-20
Author(s):  
V. S. Bezruchenko ◽  
A. A. Muravsky ◽  
A. A. Murauski ◽  
A. I. Stankevich ◽  
U. V. Mahilny

The development of electrically tunable liquid crystal (LC) lenses is perspective and promising for a wide range of applications, for example, for imaging system, pico projectors, optical zoom systems, ophthalmology applications and other. Of particular note is the development of polarization-independent LC lenses, as eliminates polarizers from application devices that reduce the efficiency of light transmission through optical systems. Alignment benzaldehyde photosensitive materials, capable of changing the pretilt angles of nematic LC from 90 to 0 ºС in a controlled manner under UV exposure are developed. The anisotropy of the benzaldehyde alignment layers is generated by a two-stage treatment consisting of uniform rubbing with a cloth and subsequent non-polarized UV exposure. Inhomogeneous UV exposure of uniformly rubbed alignment layers allows formation of refractive index gradient inside the LC cell. The concept of tunable polarization-independent self-aligned LC lens based on gradient pretilt angle alignment materials with different photosensitivity is demonstrated. Self-alignment of two polarization-dependent sub-lens is achieved due to a single UV exposure act of two alignment layers, which are located on the same piece of glass on both sides, forming one common optical axis for a polarization-independent LC lens. The independence of the polarization of LC lenses is achieved by setting the azimuthal rubbing direction of the alignment layers of two polarizationdependent LC lenses perpendicular to each other. The sub-lens cells have uniform cell gap and are independently controlled using low-voltage driving. Devices based on gradient benzaldehyde alignment materials can be used in many modern optical and photonic devices.

2017 ◽  
Vol 9 (1) ◽  
pp. 8 ◽  
Author(s):  
Eva Otón ◽  
Morten Andreas Geday ◽  
Caterina Maria Tone ◽  
José Manuel Otón ◽  
Xabier Quintana

Lyotropic chromonic liquid crystals (LCLC) are a kind of LCs far less known and more difficult to control than conventional thermotropic nematics. Nevertheless, LCLCs are a preferred option -often the only one- for applications where hydrophilic materials must be employed. Being water-soluble, LCLC can be used in numerous biology related devices, for example in target detection in lab-on-chip devices. However, their properties and procedures to align them are still less explored, with only a very limited number of options available, especially for homeotropic alignment. In this work, novel organic alignment layers and alignment properties have been explored for selected LCLCs. Non-conventional organic alignment layers were tested and new suitable procedures and materials for both homogeneous and homeotropic alignments have been found. Full Text: PDF ReferencesS.L. Hefinstine, O.D. Lavrentovich, C.J. Woolverton, "Lyotropic liquid crystal as a real-time detector of microbial immune complexes", Lett. Appl. Microbiol. 43, 27 (2006). CrossRef M.A. Geday, M. Ca-o-García, J.M. Escolano, E. Otón, J.M. Otón, X. Quintana, Conference on Liquid Crystals CLC'16, Poland (2016).M.A. Geday, E. Otón, J.M. Escolano, J.M. Otón, X. Quintana, Patent WO 2015193525 (2015). DirectLink Yu.A. Nastishin et al., "Optical characterization of the nematic lyotropic chromonic liquid crystals: Light absorption, birefringence, and scalar order parameter", Phys. Rev. E, 72 (4) 41711 (2005). CrossRef A. Mcguire, et al., "Orthogonal Orientation of Chromonic Liquid Crystals by Rubbed Polyamide Films", Chem. Phys. Chem. 15 (7) (2014). CrossRef J. Jeong, et al., "Homeotropic Alignment of Lyotropic Chromonic Liquid Crystals Using Noncovalent Interactions", Langmuir 30(10) 2914 (2014). CrossRef J.Y. Kim, H.-Tae Jung, "Macroscopic alignment of chromonic liquid crystals using patterned substrates", Phys. Chem. Chem. Phys. 18, 10362 (2016). CrossRef E. Otón, J.M. Escolano, X. Quintana, J.M. Otón, M.A. Geday, "Aligning lyotropic liquid crystals with silicon oxides", Liq. Cryst. 42 (8) 1069 (2015). CrossRef H.S. Park, et al., "Condensation of Self-Assembled Lyotropic Chromonic Liquid Crystal Sunset Yellow in Aqueous Solutions Crowded with Polyethylene Glycol and Doped with Salt", Langmuir 27, 4164 (2011). CrossRef H.S. Park, et al., "Self-Assembly of Lyotropic Chromonic Liquid Crystal Sunset Yellow and Effects of Ionic Additives", J. Phys. Chem. B 112, 16307 (2008). CrossRef R Caputo et al., "POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications", J. Opt. A: Pure Appl. Opt. 11, 024017 (2009). CrossRef


2018 ◽  
Vol 10 (4) ◽  
pp. 100 ◽  
Author(s):  
Marzena Maria Sala-Tefelska ◽  
Kamil Orzechowski ◽  
Filip A. Sala ◽  
Tomasz R. Woliński ◽  
Olga Strzeżysz ◽  
...  

In this paper, the influence of homeotropic and homogeneous orienting layers is presented in a cell filled with chiral nematic liquid crystals stabilized in a blue phase. The change of selective Bragg reflection from red to blue light was observed for homogeneous layers in rectangular geometries. The growth of blue phase crystals domains in a glass cell as well an influence of temperature and the electric field on such a structure, are also presented. Full Text: PDF ReferencesF. Reinitzer, Beitrage zur Kenntniss des Cholestherins, Monatsh Chem. 9, 421-441, (1888). CrossRef J. Yan, M. Jiao, L. Rao, and S.-T. Wu, "Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite", Opt. Express 18, 11450-11455 (2010) CrossRef Y. Chen, D. Xu, S.-T. Wu, S.-i. Yamamoto, Y. Haseba, "A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal", Appl. Phys. Lett. 102, 141116 (2013) CrossRef Y. Huang, H. Chen, G. Tan, H. Tobata, S. Yamamoto, E. Okabe, Y.-F. Lan, C.-Y. Tsai, and S.-T. Wu, "Optimized blue-phase liquid crystal for field-sequential-color displays", Opt. Mater. Express 7, 641-650 (2017) CrossRef V. Sridurai, M. Mathews, C. V. Yelamaggad, G. G. Nair, "Electrically Tunable Soft Photonic Gel Formed by Blue Phase Liquid Crystal for Switchable Color-Reflecting Mirror", ACS Appl. Mater. Interfaces, 9 (45), 39569-39575 (2017) CrossRef E. Oton, E. Netter, T. Nakano, Y. D.-Katayama, F. Inoue, "Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation", Sci. Rep. vol.7, 44575 (2017) CrossRef Q. Liu, D. Luo, X. Zhang, S. Li, Z. Tian, "Refractive index and absorption coefficient of blue phase liquid crystal in terahertz band", Liq. Cryst., Vol. 44, No. 2, pp. 348-354 (2017) CrossRef Y. Li, Y. Liu, Q. Li, S.-T. Wu, "Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film", Appl. Opt., Vol. 51, No. 14, pp. 2568-2572 (2012) CrossRef M. M. Sala-Tefelska, K. Orzechowski M. Sierakowski, A. Siarkowska, T.R. Woliński, O. Strzeżysz, P. Kula, "Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains", Opt. Mater. 75, 211-215, (2018) CrossRef H. Claus, O. Willekens, O. Chojnowska, R. Dąbrowski, J. Beeckman, K. Neyts, "Inducing monodomain blue phase liquid crystals by long-lasting voltage application during temperature variation", Liq. Cryst. 43 (5), 688-693, (2016) CrossRef M. Takahashi, T. Ohkawa, H. Yoshida, J. Fukuda, H. Kikuchi, M. Ozaki, "Orientation of liquid crystalline blue phases on unidirectionally orienting surfaces", J. Phys. D: Appl. Phys. 51 (10), 104003 (2018) CrossRef P. Joshi, X. Shang, J. De Smet, E. Islamai, D. Cuypers, G. Van Steenberge, S. Van Vlierberghe, P. Dubruel, H. De Smet, "On the effect of alignment layers on blue phase liquid crystals", Appl. Phys. Lett. 106, 101105 (2015) CrossRef K. Orzechowski, M.W. Sierakowski, M. Sala-Tefelska, P. Joshi, T.R. Woliński, H.D. Smet, "Polarization properties of cubic blue phases of a cholesteric liquid crystal", Opt. Mater. 69, 259-264 (2017) CrossRef P.-J. Chen, M. Chen, S.-Y. Ni, H.-S. Chen, Y.-H. Lin, "Influence of alignment layers on crystal growth of polymer-stabilized blue phase liquid crystals", pt. Mater. Express 6, 1003-1010 (2016) CrossRef CrossRef


Author(s):  
T. Miyokawa ◽  
S. Norioka ◽  
S. Goto

Field emission SEMs (FE-SEMs) are becoming popular due to their high resolution needs. In the field of semiconductor product, it is demanded to use the low accelerating voltage FE-SEM to avoid the electron irradiation damage and the electron charging up on samples. However the accelerating voltage of usual SEM with FE-gun is limited until 1 kV, which is not enough small for the present demands, because the virtual source goes far from the tip in lower accelerating voltages. This virtual source position depends on the shape of the electrostatic lens. So, we investigated several types of electrostatic lenses to be applicable to the lower accelerating voltage. In the result, it is found a field emission gun with a conical anode is effectively applied for a wide range of low accelerating voltages.A field emission gun usually consists of a field emission tip (cold cathode) and the Butler type electrostatic lens.


Author(s):  
Veronika S. Bezruchenko ◽  
Alexander A. Muravsky ◽  
Anatoli A. Murauski ◽  
Alexander I. Stankevich ◽  
Uladzimir V. Mahilny

Author(s):  
Julian Wüster ◽  
Yannick Bourgin ◽  
Patrick Feßer ◽  
Arne Behrens ◽  
Stefan Sinzinger

AbstractPolarizing beamsplitters have numerous applications in optical systems, such as systems for freeform surface metrology. They are classically manufactured from birefringent materials or with stacks of dielectric coatings. We present a binary subwavelength-structured form-birefringent diffraction grating, which acts as a polarizing beamsplitter for a wide range of incidence angles −30∘…+30∘. We refine the general design method for such hybrid gratings. We furthermore demonstrate the manufacturing steps with Soft-UV-Nanoimprint-Lithography, as well as the experimental verification, that the structure reliably acts as a polarizing beamsplitter. The experimental results show a contrast in efficiency for TE- and TM-polarization of up to 1:18 in the first order, and 34:1 in the zeroth order. The grating potentially enables us to realize integrated compact optical measurement systems, such as common-path interferometers.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 675
Author(s):  
H. Nilanthi Padmini ◽  
Mojtaba Rajabi ◽  
Sergij V. Shiyanovskii ◽  
Oleg D. Lavrentovich

Spatially-varying director fields have become an important part of research and development in liquid crystals. Characterization of the anchoring strength associated with a spatially-varying director is difficult, since the methods developed for a uniform alignment are seldom applicable. Here we characterize the strength of azimuthal surface anchoring produced by the photoalignment technique based on plasmonic metamsaks. The measurements used photopatterned arrays of topological point defects of strength +1 and −1 in thin layers of a nematic liquid crystal. The integer-strength defects split into pairs of half-integer defects with lower elastic energy. The separation distance between the split pair is limited by the azimuthal surface anchoring, which allows one to determine the strength of the latter. The strength of the azimuthal anchoring is proportional to the UV exposure time during the photoalignment of the azobenzene layer.


Sign in / Sign up

Export Citation Format

Share Document