scholarly journals INTELLIGENT ROOFTOP GREENHOUSES AND GREEN SKYLINE CITIES

2019 ◽  
Vol 1 (2) ◽  
pp. 15-28
Author(s):  
Marius Balas ◽  
Jelena Nikolic ◽  
Ramona Lile ◽  
Mihaela Popa ◽  
Roxana Beiu

The paper proposes a new concept of green building, able to oppose the global warming, the Intelligent Rooftop Greenhouse iRTG, as a development of the Integrated Rooftop Greenhouse IRTG. Our approach is to re­place conventional roofs with IRTGs, which are constructively con­nected with the interior of the building by flows of energy, gazes (mainly O2 enriched air from RTG to building and CO2 enriched air from build­ing to RTG) and water in order to improve the building’s metabolism. A tight human-plant sym­biosis is created such way. iRTGs perfect this architecture by actively controlling the energy, gazes and water flows, by collecting the available renewable energy resources (geothermal, sun, wind) and by adding Internet of Things IOT features to the system, in order to connect it to a surrounding Smart City. This way iRTGs may achieve an efficient integrated management of energy, gases and water, using just existing technologies: heat pumps (water to water for building’s basement and air to air for green­house), solar panels, IOT equipment, etc., controlled in a smart/intelligent manner. If a Smart City is composed mostly of iRTG buildings it becomes a Smart Green Skyline City, with low carbon foot­print and high carbon offset. The paper provides a mathematical iRTG model.

2018 ◽  
Vol 48 ◽  
pp. 03006 ◽  
Author(s):  
László Gyarmati

At the University of Szeged, as the greenest University of Hungary, the sustainability project is built on two pillars. One of them is based on events and communication campaigns held regularly for the University citizens to prompt environmental-conscious behaviour, whereas the other is built on technological developments and on the extensive use of renewable energy resources. Thus the development of built environment and social responsibility both support the adequacy to sustainability requirements. The spreading of the effective solutions to making more and more buildings of the University energy efficient, numerous investments using renewable energy are also responsible for the decrease of the natural energy use of the institution contrary to the fact that the number of the buildings of the University of Szeged is continually increasing. It can be stated that the University of Szeged is committed to using renewable energy which is taken into consideration of each investment planning. The following examples confirm it: using geothermal cascade system for heating and cooling of five university bulidings, solar panels on 24 builidings and a unique technology of using the heat of wastewater to cool and heat one of the main bulidings of the university, namely the Study and Information Centre.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yaling Chen ◽  
Yinpeng Liu

With the increasing share of renewable energy resources in the microgrid, the microgrid faces more and more challenges in its reliable operation. One major challenge is the potential congestion caused by the uncoordinated operation of flexible demands such as heat pumps and the high penetration of renewable energy resources such as photovoltaics. Therefore, it is important to conduct microgrid energy management to ensure its reliable operation. The energy storage system (ESS) scheduling as an efficient means to alleviate congestion has been widely used. However, in the existing literature, the ESSs are usually scheduled by the microgrid system operator (MSO) in a direct control manner, which is impractical in the case where customers own ESSs and are willing to schedule ESSs by themselves. To resolve this issue, this study proposes a network reconfiguration integrated dynamic tariff–subsidy (DTS) congestion management method to utilize ESSs and network reconfiguration to alleviate congestion in microgrids caused by renewable energy resources and flexible demands. In the proposed method, the MSO controls sectionalization switches while customers or aggregators schedule ESSs in response to DTS to alleviate congestion. The DTS calculation model is formulated as a mixed-integer linear programming model, considering heat pumps (HPs), ESSs, and reconfigurable microgrid topology. The numerical results demonstrate that the proposed method can effectively use ESSs and network topology to alleviate congestion and the MSO does not need to take over the scheduling of the ESS.


2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3685-3705
Author(s):  
Birol Kilkis

While moving towards 100% renewable district energy systems at low temperatures, the exergy of the district energy may decrease below the pumping exergy requirement, which eliminates the benefits of using low-exergy renewables. Because such a possibility may not be revealed by the First Law, an exergy-based holistic model for district energy systems was developed. Four tiers, namely renewable energy resources, energy conversion and storage, main district network, and the low-exergy district are identified. Each tier is indexed to the optimum plant-to-district distance for maximum exergy-based performance with minimum CO2 emissions responsibility. This model further optimizes the temperature peaking with heat pumps versus HVAC equipment oversizing and determines the optimum mix of renewables. Three alternatives of conveying and distributing exergy to the district were considered, namely: electricity only, electricity and heat with or without temperature peaking or equipment oversizing, and electricity, heat, and cold. Comparisons showed that the choice primarily depends upon the district size, district-to-plant distance, climatic conditions, local availability of RES, optimum supply temperature, and thermal condition of the buildings. Another algorithm optimizes the thermal insulation thickness in terms of equipment oversizing and temperature-peaking.


Author(s):  
M Permadi Yosa Nugraha ◽  
Abdul Rakhman ◽  
Irma Salamah

Solar energy is now a very important means of renewable energy resources. With sun tracking, it is more effective to produce more energy because solar panels can maintain a profile perpendicular to sunlight. Although the initial cost of setting up a tracking system is quite high, there are cheaper options that have been proposed from time to time. Light Dependent Resistors (LDRs) are used to detect sunlight. The solar panel is positioned where it can receive maximum light. Compared to other motors, servo motors are able to maintain torque at high speed. The tracker is in the form of a double or single axis. Dual trackers are more efficient because they track sunlight from both axes. This project is designed for low power and portable applications. Therefore, it is suitable for use in rural areas. In addition, the effectiveness of the output power collected by sunlight increases.


2021 ◽  
Vol 32 (3) ◽  
pp. 1-13
Author(s):  
M. A. Sam ◽  
D. T. O Oyedokun ◽  
K.O Akpeji

Distribution networks in Southern Africa and elsewhere are witnessing an unprecedented growth of consumer-side distributed generation (DG) courtesy of governmental interventions to maximise the utilisation of renewable energy resources through low-carbon grid-edge technologies. To deal with the increasing adoption of consumer-side DG, distribution network operators need to conduct technical studies to foster an understanding of the benefits and impacts of DG and the hosting capacity (HC) of existing distribution networks. This will aid the implementation of measures to manage grid exports. Using a distribution network in Namibia as a case study, this paper presents an algorithm for assessing the HC of consumer-side DG in existing distribution networks that are situated in areas anticipating high and uniform uptake of DG. The algorithm is a hybrid of deterministic and probabilistic methods. The uniqueness of the algorithm is the concept of calculating monthly HC. The algorithm was tested on a real existing residential distribution network and the results confirmed that HC varies monthly. However, the practical implementation of monthly HC requires upgrades to existing inverter technology, which currently contains a single export limit functionality. This opens the possibility to drive innovation in the inverter technology to develop a date-based multiple export limit functionality.


Author(s):  
Ms. Aparajita Gogoi

Since the dawn of civilization, human beings have been using different energy sources in order to fulfil their various requirements. Energy is one of the human civilization’s basic requirements for development. For example – electricity powers our household appliances like TV, air-conditioners, phones , washing machines etc. We also use energy to run vehicles like cars, buses and trains and it is used to run most industries and factories. Most of these energy sources are non-renewable in nature, and might get depleted soon, such as the Oil and coal. This creates a requirement for renewable energy resources which has cheap costs. Solar energy is considered as one of the main energy resources in warm countries. Also solar energy is a clean, easily accessible and abundantly available alternative energy source in nature and has been used traditionally since ages in the absence of energy sources. Hence we require a system which will be able to efficiently utilize solar energy such as solar panels but these have some drawbacks as they don’t rotate with the movement of the sun, hence the need arises for that of a solar tracker. KEYWORDS- IoT, Ldr, Servomotors, Solar Panel


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1892 ◽  
Author(s):  
Smarajit Ghosh ◽  
Vinod Karar

A growing interest in renewable energy resources has been observed for several years, due to their pollution-free nature, availability all over the world, and continuity. These facts make these energy resources attractive for many applications. In this work, the hybrid combination of a photovoltaic-biomass system is investigated as an energy source. This paper determines optimal sizing and cost reduction of grid-integrated renewable energy resources by using an intelligence optimization technique, the dragonfly algorithm. The efficiency of the proposed methodology is also compared with an existing technique, which uses the artificial bee colony (ABC) algorithm. The scope of this work is to reduce the annual total cost of power with a reduced number of solar panels. The monthly average solar radiation is used to compute the obtained power. The outcome of the proposed technique proves that the grid-connected system with an optimal number of components satisfactorily meets the needs of the village at a reduced price. The simulation results are carried out under the MATLAB environment. The comparison of results clearly demonstrates that the proposed system is much more efficient than the existing one.


2020 ◽  
Vol 12 (22) ◽  
pp. 3748
Author(s):  
Fernando Ramos Martins

The development of renewable energy sources plays a fundamental role in the transition towards a low carbon economy. Considering that renewable energy resources have an intrinsic relationship with meteorological conditions and climate patterns, methodologies based on the remote sensing of the atmosphere are fundamental sources of information to support the energy sector in planning and operation procedures. This Special Issue is intended to provide a highly recognized international forum to present recent advances in remote sensing to data acquisition required by the energy sector. After a review, a total of eleven papers were accepted for publication. The contributions focus on solar, wind, and geothermal energy resource. This editorial presents a brief overview of each contribution.


Sign in / Sign up

Export Citation Format

Share Document