scholarly journals PARAMETER OPTIMIZATION AND EXPERIMENT OF SLIDER-HOLE-WHEEL SEED-METERING DEVICE BASED ON DISCRETE ELEMENT METHOD

2021 ◽  
pp. 410-420
Author(s):  
Xiaoshuang Zhang ◽  
Dequan Zhu ◽  
Kang Xue ◽  
Lanlan Li ◽  
Jianjun Zhu ◽  
...  

To improve the adaptability and precision of the slider-hole-wheel seed-metering device to meet the requirements of precision sowing, the single factor simulation experiments and the three factors three levels of orthogonal simulation experiments were carried out based on the discrete element method. The rotation speed of the seeding shaft, the shape of the hole, and the depth of the hole were set as experiment factors. The results of simulation experiments showed that the qualified rate was the highest when the rotation speed of the seeding shaft was 30 r/min, the shape of the hole was oval, and the depth of the hole was 9 mm. The qualified rate, replay rate, and miss-seeding rate were 89.09 %, 3.64 %, and 7.27 %,respectively. The hybrid rice seeds of Zhongnong 2008, Chuangliangyou 4418, and Gangyou 898 were chosen as the materials for the bench and field seeding performance tests to verify the reliability of the simulation results. The test results showed that the qualified rate of Zhongnong 2008, Chuangliangyou 4418, and Gangyou 898 seed in bench tests were 85.07 %, 85.20 %, and 82.13 %, and the qualified rate of Zhongnong 2008, Chuangliangyou 4418, and Gangyou 898 seed in field tests were 82.13 %, 82.27 %, and 80.53 %. The seeding performance with the three kinds of rice seeds could meet the agronomic requirements for precision sowing of hybrid rice. The paper provided the basis for the structure optimization and seeding performance improvement of the slider-hole-wheel seed-metering device.

2018 ◽  
Vol 169 ◽  
pp. 01035
Author(s):  
Qinghui Lai ◽  
Ziwu Hua ◽  
Jinlong Xing ◽  
Wenpeng Ma

The cell wheel seed metering device was improved and a stirring seed-filling device was added to improve the seed-filling performance of cell wheel pseudo-ginseng precision seed metering devices. Using pseudo-ginseng seeds in Wenshan Prefecture, Yunnan Province as the objects for seed metering, the software application EDEM was adopted based on the discrete element method for the simulation calculation and analysis of the seed-filling performance of the seed metering device under 4 rotational speeds of the cell wheel and 6 rotational speeds of the stir wheel. The simulation results indicate that the filling ratio increases as the rotational speed of the stir wheel increases under a constant rotational speed of the cell wheel. Test verification of the simulation analysis results was conducted on the test bed of the seed metering device. The results indicate that increasing the rotational speed of the stir wheel can obtain a filling ratio of over 90%. The test results display a similar variation trend to that of the simulation analysis with an error of average filling ratio less than 5%. Therefore, it is feasible to analyze the seed-filling performance of the stirring and seed-filling device of the seed metering device with the discrete element method.


2021 ◽  
Vol 11 (4) ◽  
pp. 1-7
Author(s):  
Y.U. Sharif ◽  
M.J. Brown ◽  
M.O. Ciantia ◽  
A.J. Lutenegger ◽  
P.V. Pavan Kumar ◽  
...  

Screw piles have been used to support a variety of structures due to their ease of installation and high axial capacity. Recently, screw piles have been proposed as an alternative foundation solution for offshore renewable structures due to their quiet or silent installation. Due to their variable geometry, design and prediction of installation requirements and its effect on in-service capacity may be challenging. In this research study, the discrete-element method (DEM) is used to numerically recreate a series of onshore field tests. The aim of the study is to investigate the ability of DEM to be used as a practical design tool for the design and deployment of screw piles. In this case study, the effect of the geometric helix pitch on the installation torque and tensile capacity of screw piles installed into sand is investigated. DEM results show that the geometric pitch of a screw pile appears to have little effect on the installation torque. The results show that DEM has the potential to be used as a practical design procedure for complex foundation installation where the simulation needs to capture installation effects.


2013 ◽  
Vol 11 (6) ◽  
pp. 1217-1222 ◽  
Author(s):  
Zhengquan Li ◽  
Jianqun Yu ◽  
Zhanrong Feng ◽  
Hong Fu ◽  
Lienan Zhang ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 233
Author(s):  
Xiaoli Wang ◽  
Jie Yi ◽  
Ziyu Zhou ◽  
Chunhua Yang

The rotation speed of a mill is an important factor related to its operation and grinding efficiency. Analysis and regulation of the optimal speed under different working conditions can effectively reduce energy loss, improve productivity, and extend the service life of the equipment. However, the relationship between the optimal speed and different operating parameters has not received much attention. In this study, the relationship between the optimal speed and particle size and number was investigated using discrete element method (DEM). An improved exponential approaching law sliding mode control method is proposed to track the optimal speed of the mill. Firstly, a simulation was carried out to investigate the relationship between the optimal speed and different operating parameters under cross-over testing. The model of the relationships between the optimal rotation speed and the size and number of particles was established based on the response surface method. An improved sliding mode control using exponential approaching law is proposed to track the optimal speed, and simulation results show it can improve the stability and speed of sliding mode control near the sliding surface.


2012 ◽  
Vol 157-158 ◽  
pp. 550-557 ◽  
Author(s):  
Yu Jie Ji ◽  
Hong Da Xue ◽  
Cheng Hua Li

Seed metering procedure of metering device was a key factor to affect performance of precision seed metering device. Based on analysis of seed holding volume of metering scoop, relationship between the seed holding volume and structure parameters of the metering scoop was established, and beginning and ending angles of seed clearing during the seed metering procedure were determined. Simulation analysis of seed metering procedure with different parameters of the metering device was carried out by mean of discrete element method to identify the influences of metering scoop parameters on the performance the metering device, and suitable range of structure parameters of the metering scoop were investigated. Finally, the reasonability of design parameters of the metering scoop for experiment usage was verified.


2012 ◽  
Vol 566 ◽  
pp. 488-493
Author(s):  
Yu Jie Ji ◽  
Cheng Hua Li ◽  
Hong Da Xue

Discrete element method is an important technical tool for analysis of motion law of granular material. Based on the principle of discrete element method, using linear viscoelastic contact mechanics model, simulation calculate for discrete element simulation was developed by MFC. Through the combination of arc modeling a geometric model of the different core seed were built, and simulation of the work process of corn precision metering device was conducted. Suitability of parameters on working procedure of the metering device was analyzed.


Author(s):  
Lijuan Zhao ◽  
Meichen Zhang ◽  
Baisheng Shi ◽  
Xionghao Liu ◽  
Yadong Wang

Drum of Shearer undertakes the main function of coal falling and loading, and its performance directly affects the working efficiency of the shearer. Therefore, in order to realize the analysis of the performance of the shearer drum, the MG2 × 55/250-BW shearer drum was the engineered object. Combining the physical and mechanical properties experiment results of coal samples, the coupling model of the drum cutting in complex coal seam was established using discrete element method. The falling-coal characteristics of the spiral drum were studied under different working conditions, and the falling-coal trajectories of the coal and rock particles were fitted. Based on a virtual prototype, the variations of the coal loading rate and lump coal rate with different design parameters were determined by studying the falling-coal effect and loading performance of the drum. Considering the drum performance, multi-objective optimization theory was used to determine the optimal operating and structural parameters. The results indicate that, in the process of drum cutting, the cutting depth has the most significant effect on the coal loading rate, while, the blade spiral angle has the least significant. Moreover, with the increase of the cutting depth of drum and the traction speed, the lump coal rate increases. While, with the increase of the drum rotation speed and the blade spiral angle, the lump coal rate decreases. It is found that when the cutting depth of the drum is 597 mm, the traction speed is 5.4 m/min, the drum rotation speed is 104.8 r/min, and the blade spiral angle is 12° the performance of the drum is optimal. Compared with the falling-coal trajectories before optimization, the displacements of the coal and rock particles ejected along the optimal falling-coal trajectories increase in the coal loading direction. The loading rate and lump coal rate of the drum increase by 6.05% and 12.27%, respectively. The load fluctuation of the drum decreases, and the productivity increases.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 101-108
Author(s):  
Daniel Varney ◽  
Douglas Bousfield

Cracking at the fold is a serious issue for many grades of coated paper and coated board. Some recent work has suggested methods to minimize this problem by using two or more coating layers of different properties. A discrete element method (DEM) has been used to model deformation events for single layer coating systems such as in-plain and out-of-plain tension, three-point bending, and a novel moving force picking simulation, but nothing has been reported related to multiple coating layers. In this paper, a DEM model has been expanded to predict the three-point bending response of a two-layer system. The main factors evaluated include the use of different binder systems in each layer and the ratio of the bottom and top layer weights. As in the past, the properties of the binder and the binder concentration are input parameters. The model can predict crack formation that is a function of these two sets of factors. In addition, the model can predict the flexural modulus, the maximum flexural stress, and the strain-at-failure. The predictions are qualitatively compared with experimental results reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document